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Purpose: Our purpose was to develop a deep learning model (AbsegNet) that produces accurate contours of 16 organs at risk
(OARs) for abdominal malignancies as an essential part of fully automated radiation treatment planning.
Methods and Materials: Three data sets with 544 computed tomography scans were retrospectively collected. Data set 1 was
split into 300 training cases and 128 test cases (cohort 1) for AbsegNet. Data set 2, including cohort 2 (n = 24) and cohort 3
(n = 20), were used to validate AbsegNet externally. Data set 3, including cohort 4 (n = 40) and cohort 5 (n = 32), were used to
clinically assess the accuracy of AbsegNet-generated contours. Each cohort was from a different center. The Dice similarity
coefficient and 95th-percentile Hausdorff distance were calculated to evaluate the delineation quality for each OAR. Clinical
accuracy evaluation was classified into 4 levels: no revision, minor revisions (0% < volumetric revision degrees [VRD] ≤ 10%),
moderate revisions (10% ≤ VRD < 20%), and major revisions (VRD ≥20%).
Results: For all OARs, AbsegNet achieved a mean Dice similarity coefficient of 86.73%, 85.65%, and 88.04% in cohorts 1, 2,
and 3, respectively, and a mean 95th-percentile Hausdorff distance of 8.92, 10.18, and 12.40 mm, respectively. The perfor-
mance of AbsegNet outperformed SwinUNETR, DeepLabV3+, Attention-UNet, UNet, and 3D-UNet. When experts evaluated
contours from cohorts 4 and 5, 4 OARs (liver, kidney_L, kidney_R, and spleen) of all patients were scored as having no
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revision, and over 87.5% of patients with contours of the stomach, esophagus, adrenals, or rectum were considered as having
no or minor revisions. Only 15.0% of patients with colon and small bowel contours required major revisions.
Conclusions: We propose a novel deep-learning model to delineate OARs on diverse data sets. Most contours produced by
AbsegNet are accurate and robust and are, therefore, clinically applicable and helpful to facilitate radiation therapy workflow.
� 2023 Elsevier Inc. All rights reserved.
Introduction
Radiation therapy is one of the most important local treat-
ment modalities for abdominal malignancies, such as cervi-
cal, prostate, pancreatic, and hepatic cancers. In the process
of radiation therapy administration, delineating abdominal
organs at risk (OARs) on computed tomography (CT)
images is an essential step. Radiation treatment planning
requires accurately calculating radiation dose, especially for
OARs close to gross tumor volumes. Hence, inaccurate
delineation might lead to dose miscalculations and unex-
pected side effects.1

In past decades, radiation oncologists manually con-
ducted OAR delineation with slice-by-slice CT images. It is
labor-intensive and may take several hours per case. Addi-
tionally, manual delineation of OAR often leads to inter-
and intraobserver variabilities that can influence treatment
outcomes in certain cases.2-5 Therefore, consistent and
high-quality abdominal OAR delineation is greatly desired
in clinical practice. In this context, if feasible, full autoseg-
mentation of whole abdominal OARs by deep learning (DL)
methods could be more advantageous.

Benefitting from the advantages of feature learning, DL-
based automatic delineation has offered a promising solu-
tion to solve the problems of manual delineation.6 In recent
years, a wide range of DL-based models have been proposed
to segment abdominal OARs, and huge progress has been
made. For example, in previous studies, spleen and liver seg-
mentation could obtain 96% and 95% accuracy, respectively,
regarding their Dice similarity coefficients (DSC).7,8 In a
recent work on kidney and pancreas segmentation, 93% and
79% DSC were obtained, respectively.9

However, several limitations still exist in current auto-
matic segmentation models for abdominal OARs. For
instance, many abdominal data sets just contain single-insti-
tutional, single-scanner, or single-disease patients.10 It is
unclear whether the segmentation performance acquired on
those data sets might generalize well on more heterogeneous
data. Huge differences in organ morphologic structure, dis-
ease status, image appearance, and image quality obtained
from various patients by different scanners could affect the
accuracy of image segmentation.

The main focus of most studies is on the reporting of
segmentation results in their own cohorts, but they fail to
perform a comprehensive clinical assessment for auto-
matically segmented contours, a critical step in medical
image segmentation.11 Van Dijk et al12 reported that it
took an average of 34 to 54 minutes to make the auto-
matic contours suitable for clinical use. Other
disadvantages should not be ignored. For example, some
studies just segmented a few OARs, and in some studies,
ground truth OARs used network predictions as initial
results and were refined by experts, which might have
rater bias.10,13,14

To address the aforementioned issues, in this paper, we
retrospectively collected whole abdominal CT images of 544
patients with various tumors from 5 different centers. Then,
we proposed a new DL model, named “AbsegNet,” that
could delineate a comprehensive set of 16 abdominal OARs.
The performance of AbsegNet was validated in 172 patients
across 3 different cohorts, and the accuracy was compared
with 5 previous state-of-the-art methods. Moreover, 2 expe-
rienced radiation therapy practitioners were invited to eval-
uate the accuracy of AbsegNet in another independent 2
cohorts with 72 patients.
Methods and Materials
Data summary

Three data sets with a total number of 544 patients in this
study were used (Table 1). Data set 1, collected from the
West China Hospital (WCH), contained 428 planning CT
images, which were randomly split into 300 cases for train-
ing and 128 cases for internal testing (cohort 1), with a
ratio of around 3:1. Data set 2 included cohort 2 (n = 24)
collected from the Sichuan Cancer Hospital (SCH), and
cohort 3 (n = 20) was collected from a public data set
(LiTS2017).15 These 2 cohorts were used to externally vali-
date the performance of AbsegNet. Data set 3 consisted of
cohort 4 (n = 40) collected from the Southern Medical
University (SMU), and cohort 5 (n = 32) was from the
Anhui Provincial Hospital (APH), which were used to
clinically assess the accuracy of AbsegNet-generated con-
tours. The flow chart of this study is illustrated in Fig 1.

Distributions of sex, age, tumor sites, and scanning
parameters of these data sets are presented in Table 1.
Patients with various tumors with CT images from different
scanners using different slices were incorporated into this
study. In addition, a comparison of the included data sets
with several available public data sets is shown in Table E1.
The included data sets mostly covered OARs for abdominal
radiation therapy with ample sample sizes from multiple
centers.

This retrospective study was approved by the Ethics
Committee on Biomedical Research for these hospitals, and
informed consent was waived.



Table 1 Baseline characteristics and scanning parameters

Characteristics
Data set 1 (n = 428) Data set 2 for external testing (n = 44) Data set 3 for clinical evaluation (n = 72)

Training cohort Internal testing cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5
WCH (n = 300, %) WCH (n = 128, %) SCH (n = 24, %) Publicz (n = 20) SMU (n = 40, %) APH (n = 32, %)

Sex

Male 182 (60.7) 76 (59.4) 10 (41.7) NA 0 0

Female 118 (39.3) 52 (40.6) 14 (58.3) NA 40 (100.0) 32 (100.0)

Age (median) 47 (17-75) 47 (20-72) 49 (36-72) NA 55 (35-62) 53 (46- 70)

Tumor site

Rectal cancer 143 (47.7) 60 (46.9) 5 (20.8) NA 0 0

Prostate cancer 39 (13.0) 18 (14.1) 7 (29.2) NA 0 0

Gynecologic* 34 (11.3) 11 (8.6) 12 (50.0) NA 40 (100.0) 32 (100.0)

Bladder cancer 11 (3.6) 5 (3.9) 0 NA 0 0

Metastatic tumor 44 (14.7) 20 (15.6) 0 NA 0 0

Othersy 29 (9.7) 14 (10.9) 0 NA 0 0

OAR types annotated 16 16 16 15x 16 16

Scanning parameters

Total slice (median) 200 (123-368) 201 (145- 436) 168 (118- 248) 501 (276- 842) 176 (152-201) 172 (103-260)

Thickness (median, mm) 3.0 (0.60-0.98) 3.0 (2.5-3.0) 3.0 (3.0- 3.0) 1.0 (0.70- 1.5) 3.0 (3.0- 3.0) 3.0 (3.0- 5.0)

In plane spacing 0.98 (0.60-0.98) 0.98 (0.78- 1.27) 0.98 (0.95- 0.98) 0.74 (0.60 -0.90) 0.96 (0.90- 1.04) 1.04 (0.91- 1.17)

Manufacturer Siemens Siemens Philips NA Philips Philips

Abbreviations:WCH =West China Hospital; SCH = Sichuan Cancer Hospital; SMU = Southern Medical University; APH = Anhui Provincial Hospital; NA = not applicable; OAR = organ at risk.
* Included cervical cancer and endometrial cancer.
y Included liver cancer, pancreatic cancer, kidney cancer, sarcoma, and testicular cancer.
z These patients were collected from a public data set, LiTS2017.15
x Considering the liver was manually previously labeled in LiTS2017, it was excluded, and the remaining 15 OARs were labeled in this study.
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Ground truth contours

To ensure data uniformity, abdominal OARs in each case
were manually delineated by a radiation oncologist from
WCH with >8 years of experience treating abdominal malig-
nancies. After that, another senior oncologist from the same
hospital with >20 years of experience checked and revised
these annotations carefully and, in cases of disagreement, pro-
duced consensus annotations. All CT scans of these data sets,
except for LiTS2017,15 were exhaustively labeled with 16 ana-
tomic organs, including the liver, spleen, kidneys (left and
right), stomach, gallbladder, esophagus, pancreas, adrenals,
duodenum, colon, small bowel, rectum, bladder, and head of
the femurs (left and right). Considering the liver was manu-
ally previously labeled in LiTS2017, it was excluded, and the
remaining 15 OARs were labeled in this study. The OAR
delineation principles were in accordance with relevant radia-
tion guidelines.16,17 An example CT scan and ground truth
contour from data set 1 is shown in Fig E1.

All manually delineated contours were performed in the
MIM 7.07 Software (Microsoft, Corp).18,19
Segmentation network construction

The AbsegNet framework is shown in the top right of Fig 1,
and detailed architecture parameters are presented in
Table E2. In this work, we present a new method to train
accurate and robust segmentation networks by employing
Fig. 1. The flow chart of this study. The top right of the figure is
model. In the training stage, the teacher and the student take image
augmentation and the student with strong augmentation as inputs) a
more robust. The student network updates parameter by minimizi
exponential moving average of the student’s parameter. In the testing
tation results. The mathematical definitions are presented in the secti
= West China Hospital; CT = computed tomography; EMA = expon
data augmentation and knowledge distillation, consisting of
a teacher-student model. Considering that CT images come
from different centers, patients, scanning protocols, tumors,
and contrast types may cause data distribution shifts. As
expected, our data sets had huge intensity distribution gaps
(Fig. E2). These distribution shifts could lead to model col-
lapse on unseen centers.20 To boost the network’s robust-
ness on unseen data sets, we used a wide range of data
augmentation strategies to generate different augmented
images for network training online, such as intensity trans-
formations (randomly using random noise, sharpening, his-
togram match, nonlinear transformation, and histogram
equalization) and spatial transformations (randomly apply-
ing rotation, rescaling, elastic deformation). Furthermore,
we combined data augmentation with a general knowledge
distillation framework to train segmentation models.21,22

Specifically, in the training stage, teacher (Q) and student
(C) networks take augmented images (T1(i) and T2(i)) as
inputs and produce corresponding predictions (QT1ðiÞ) and
C(T2(i))). Here, T1 is a random noise transformation, and
T2 is a random one in the intensity and spatial transforma-
tions sets. T1 and T2 can be considered weak and strong aug-
mentations, respectively. Then, we encouraged the student
to generate predictions based on the teacher via a knowledge
distillation loss (Lkd) according to the following equation.

Lkd ¼ Lkl C T2 ið Þ� �
; Q T1 ið Þ� �

=t
� �

Where t is a temperature factor that controls the impor-
tance of the teacher’s predictions and is set to 4, and Kl is
the AbsegNet framework, which consists of a teacher-studen
s with different augmentation strategies (the teacher with weak
nd then employ the teacher’s output to teach the student to be
ng loss functions, and the teacher parameter is updated as an
stage, the teacher model was used to produce the final segmen-
on of segmentation network construction. Abbreviations: WCH
ential moving average; OAR = organ at risk.
t
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the Kullback-Leibler divergence function. At the same time,
the student network is also supervised by the ground truth
(gt(i)) via a combination loss as the following.

Lseg ¼ 0:5

� Lce C T2 ið Þ� �
; gt ið Þ� �þ Ldice C T2 ið Þ� �

; gt ið Þ� �� �

Where ce and dice represent the cross-entropy loss and
Dice loss, respectively, and the total objective loss function
is Ltotal = Lseg + 0.1£ Lkd. Afterward, the student network
updates the parameter by minimizing Ltotal, and the teach-
er’s parameter is updated as an exponential moving average
of the student’s parameter. Based on the proposed method,
the segmentation network is encouraged to learn the ana-
tomic context feature and ignore the intensity distribution
to boost the generalization on unseen data sets. In the test-
ing stage, the teacher model was used to produce final
results following previous suggestions.22 Different from pre-
vious works,23-25 AbsegNet could be applied to unseen data
sets without fine-tuning or retraining.

To confirm the usefulness of distillation learning in the
segmentation of CT images from various centers, we first
reported the results of the proposed method with and with-
out knowledge distillation in cohorts 1, 2, and 3, which
showed that using knowledge distillation could improve
performance in the 3 cohorts (Table E3). The overall aver-
age DSC of AbsegNet with knowledge distillation was signif-
icantly higher than that of AbsegNet without knowledge
distillation (cohort 1, 86.73% vs 85.34%; cohort 2, 85.65% vs
81.98%; cohort 3, 88.04% vs 84.65%; all P values < .05)
(Table E3).
Preprocessing of images

In the preprocessing phase, all images were reformatted into
a standard orientation of right-to-left, anterior-to-posterior,
and inferior-to-superior, in the x, y, and z axes, respectively.
Each image’s intensities (Hounsfield units) were adjusted
based on the gray-level histogram and cut-off intensities
outside the 0.5 and 99.5 percentiles. Then, we resampled the
images to the fixed resolution of 0.98 £ 0.98 £ 3.0 mm3,
which was the medium resolution of the training set. Finally,
all images were normalized to zero mean and unit variance.
In the postprocessing phase, the largest connected compo-
nent selection and morphologic operation were used to
refine the network’s predictions and generate final results.
Implementation details

The proposed method was implemented by PyTorch on a
Ubuntu20.04 desktop with 2 NVIDIA 3090 GPUs. A 3-
dimensional (3D)-UNet23 was used as a baseline model. The
total epoch was set to 1000, and the batch size was 2. The
input patch size was randomly cropped from the prepro-
cessed image with a shape of 64 £ 192 £ 192. We employed
a set of data augmentation strategies and knowledge distilla-
tion to train the network (detailed in Supplementary Materi-
als). We used the stochastic gradient descent optimizer
(weight decay = 10-4, momentum = 0.9) to update network
parameters. The initial learning rate was 0.01 and adjusted
by a poly learning rate strategy. In the testing stage, we used
a sliding window strategy with a stride of 32 £ 96 £ 96 to
produce final predictions.
Method comparison

In this work, AbsegNet was compared with 5 famous and
widely used methods: (1) UNet, which presents a U-shape
encoder-decoder network for biomedical image segmenta-
tion and achieves very promising results on many tasks26;
(2) 3D-UNet, an extension of UNet from 2D space to 3D
space for volumetric image segmentation23; (3) DeepLabV3
+, an encoder-decoder with an atrous separable convolution
network for natural image semantic segmentation24; (4)
Attention-UNet, which extends UNet attention gates to
focus on target structures of varying shapes and sizes for
better segmentation results25; and (5) SwinUNETR, a new
combination framework that uses the merits of Swin Trans-
formers and U-Shape networks for medical image segmen-
tation and achieves encouraging performance.27 To ensure
consistency of comparisons, public implementations of the
methods were used to directly train the network based on
the same training data set and procedures (Table E4).
Assessment of AbsegNet-generated contours by
experts

Two senior experts (A and B) with >15 years of radiation
experience from SMU and APH, respectively, were invited
to assess the accuracy of AbsegNet-generated contours from
cohorts 4 and 5 (Fig. 1). Each expert was required to revise
incorrect OAR segmentation when necessary. In the correc-
tion process, experts were blinded to the ground truth con-
tours and encouraged to obey the same delineation
guidelines described previously. Considering the heavy bur-
den of annotating with 16 OARs, 7 representative OARs,
including some solid and gastrointestinal organs, were
assigned to expert A, and the other 9 OARs, including some
of those organ types, were assigned to expert B. The kidneys
(left and right), pancreas, duodenum, bladder, and femurs
(left and right) were reviewed by expert A. The liver, spleen,
stomach, gallbladder, esophagus, adrenals, colon, small
bowel, and rectum were reviewed by expert B.

Next, AbsegNet-predicted contours were compared with
their corresponding revised contours to calculate volumetric
revision degrees (VRD), which were defined as the volume
required to be edited divided by the volume of AbsegNet-
generated contours multiplied by 100.28 Accuracy was clas-
sified into 4 levels: no revision (VRD = 0%), minor revisions
(0 < VRD ≤ 10%), moderate revisions (10% < VRD <
20%), and major revisions (VRD ≥ 20%).
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Qualitative analysis was also an important part of our
research. Similar to a previous work,29 experts A and B were
invited to subjectively evaluate each automatic contouring
result together. At first, we randomly selected 5 cases from
each cohort. Then, autosegmentations from these 25
patients were evaluated by the 2 experts. We used 3-grade
criteria to estimate the degree of clinically acceptable: (1)
completely acceptable (the prediction can be used in the
treatment planning without any revision), (2) acceptable
(the prediction needs a few refinements but has no obvious
clinical effect without corrections), and (3) unacceptable
(the prediction needs to be substantially revised before treat-
ment planning or needs to be redelineated manually).

A study was also performed to compare the time spent by
expert A in delineating OARs under 2 modes: with or with-
out assistance from AbsegNet. In the first mode, the con-
tours of 16 OARs produced by AbsegNet were provided to
expert A, who would then examine the predictions and
revise the incorrect ones when necessary. In the second
mode, the OAR delineation was conducted completely man-
ually. The contouring time for each patient includes the time
spent verifying the results and revising the model’s predic-
tions. We randomly selected 10 cases from the 25 patients
mentioned previously to conduct this experiment.
Evaluation metrics

To evaluate the performance of AbsegNet, the volumetric
DSC and 95th percentile Hausdorff distance (HD95) were
adopted, which are the most commonly used metrics in this
field.30 The DSC measures the volumetric overlap between 2
contours, and the HD measures the boundaries of 2 con-
tours. Because the max HD is very sensitive to outliers,
HD95, which measures the 95th percentile distance between
2 contours, is often used instead.31
Statistical analysis

Statistical analysis was performed using an SPSS software
package (version 22.0; IBM SPSS, Inc). Numeric variables
were denoted as mean § SD and compared by paired t test
when necessary. A 2-tailed P value < .05 was considered sig-
nificant.
Results
Intraobserver variability examination

To determine the intraobserver variability, 10 CT images
were randomly selected from data set 1 and recontoured by
the same expert after an interval of 2 months. The second
contours were compared with the first corresponding con-
tours to calculate DSC and HD95. We found that the distri-
bution of mean DSC (mDSC) for 12 out of 16 OARs was
around 95%, and the mean HD95 (mHD95) across all
OARs was <5 mm (Fig. E3). It was suggested that the intra-
observer discrepancy was minor and the annotations were
reliable.
Performance comparison in the internal testing
cohort

The DSC and HD95 of 16 OARs obtained by 6 DL algo-
rithms in cohort 1 are listed in Table 2. Regarding mDSC,
AbsegNet performed best in 14 out of 16 OARs among 6
algorithms and achieved an mDSC >90% for 8 out of 16
OARs. Only 2 OARs (adrenals and duodenum) had an
mDSC <80%. Considering all OARs as a whole, the mDSC
was 86.73%, 84.39%, 82.11%, 84.67%, 84.66%, and 82.82%
for AbsegNet, SwinUNETR, DeepLabV3+, Attention-UNet,
UNet, and 3D-UNet, respectively. In terms of HD95, Abseg-
Net showed the best performance for 12 OARs. We also
observed that 5 OARs produced by AbsegNet had an
mHD95 <5 mm and 11 OARs <10 mm. The overall
mHD95 of AbsegNet, SwinUNETR, DeepLabV3+, Atten-
tion-UNet, UNet, and 3D-UNet were 8.92, 12.50, 16.44,
13.12, 13.00, and 23.22 mm, respectively. Furthermore,
compared with SwinUNETR (the best among all previous
algorithms), a 29% reduction of mHD95 was observed for
AbsegNet. Visualization of a randomly selected CT scan
from cohort 1 is illustrated in Fig 2.

Table E5 summarizes previously reported delineation
results for multiple abdominal OARs, with comparable
accuracy observed in AbsegNet.
Performance comparison in external testing
cohorts

Table 3 summarizes the DSC and HD95 in external cohort
2. Regarding DSC, AbsegNet was prone to produce more
accurate contours than other algorithms, showing the best
performance at 13 OARs. The overall mDSCs of AbsegNet,
SwinUNETR, DeepLabV3+, Attention-UNet, UNet, and
3D-UNet were 85.65%, 79.27%, 78.51%, 79.73%, 81.14%,
and 77.58%, respectively. Regarding HD95, the accuracy of
13 OARs produced by AbsegNet outperformed 5 previous
algorithms. Furthermore, the advantage of AbsegNet over
other algorithms is more obvious when evaluating the
mHD95 across all OARs, with the value decreasing nearly
50% compared with SwinUNETR, DeeplabV3+, UNet, and
3D-UNet. Similarly, the visualization of a randomly selected
patient from cohort 2 is shown in Fig 2.

Consistent results were obtained from the public CT
images (Table E6). AbsegNet presented the best accuracy in
13 out of 15 OARs. Overall mDSC of AbsegNet, SwinU-
NETR, DeepLabV3+, Attention-UNet, UNet, and 3D-UNet
was 88.04%, 79.87%, 83.03%, 81.75%, 82.27%, and 82.43%,
respectively. An improvement of 5.01% in mDSC was
observed when comparing AbsegNet with DeepLabV3+, the
best among the 5 previous methods. For HD95, AbsegNet



Table 2 Accuracy comparison in cohort 1 (n = 128)

Variable
DSC (%) HD95 (mm)

OAR AbsegNet SwinUNETR DeepLabV3+ Att UNet 3D-UNet AbsegNet SwinUNETR DeepLabV3+ Att UNet 3D-UNet

Liver 96.40 § 1.13║ 95.94 § 1.58 95.00 § 2.14 95.61 § 2.06* 95.49 § 1.44 95.25 § 1.79 4.26 § 5.66║ 4.63 § 8.27 6.27 § 9.60 5.04 § 4.22 5.55 § 4.20 5.58 § 4.46

Spleen 95.13 § 5.32║ 94.17 § 6.31 93.81 § 3.66 94.51 § 5.39* 94.46 § 3.45 93.77 § 4.26 3.38 § 7.71║ 4.07 § 7.25 4.31 § 5.92 3.61 § 5.46 6.79 § 19.15 3.98 § 5.21

Kidney_L 95.60 § 1.07║ 94.36 § 2.93 94.31 § 2.68 94.52 § 6.29y 94.86 § 2.93 94.16 § 3.08 2.54 § 0.72║ 8.79 § 23.72z 3.18 § 1.84 4.09 § 9.63 3.03 § 1.82 3.78 § 4.01

Kidney_R 95.60 § 1.31║ 94.29 § 2.76 94.11 § 2.98 94.72 § 3.60z 94.97 § 2.30 94.53 § 2.32 2.41 § 0.83║ 7.97 § 23.01z 3.59 § 3.77 3.07 § 2.43 3.63 § 4.77 3.26 § 3.26

Stomach 91.46 § 4.08║ 89.11 § 7.53 88.08 § 8.00 88.95 § 7.38* 89.41 § 5.95 86.90 § 9.38 9.87 § 12.46║ 13.48 § 20.1 18.21 § 42.38 13.59 § 19.91 14.30 § 14.85 18.24 § 38.04

Gallbladderx 80.74 § 15.17║ 71.26 § 25.41 74.42 § 17.79 74.56 § 20.29* 76.02 § 17.09 71.79 § 21.59 6.93 § 9.56║ 13.37 § 19.34* 10.86 § 12.38 13.46 § 18.53 10.22 § 13.32 10.95 § 15.33

Esophagus 81.36 § 6.25║ 78.81 § 6.33 73.24 § 11.91 77.54 § 8.79* 76.96 § 8.41 73.00 § 12.51 5.19 § 4.46║ 5.26 § 2.89 6.15 § 3.97 31.91 § 91.13 5.64 § 3.16 7.28 § 4.84

Pancreas 82.71 § 7.54║ 80.46 § 7.92 77.64 § 8.33 79.82 § 8.43* 79.82 § 8.00 76.90 § 9.63 7.64 § 7.25║ 8.82 § 9.66 10.56 § 8.79 8.62 § 7.72 9.99 § 8.20 12.08 § 22.83

Adrenals 71.34 § 11.63║ 65.16 § 16.36 49.30 § 10.72 68.13 § 12.99* 67.58 § 12.06 67.71 § 12.23 6.58 § 5.28║ 22.4 § 17.49* 65.22 § 10.81 8.18 § 9.59 8.66 § 7.06 8.39 § 8.66

Duodenum 67.77 § 16.28 83.46 § 8.99║ 61.21 § 17.15 65.51 § 17.04y 64.64 § 17.77 62.45 § 17.65 25.85 § 35.60 16.78 § 17.34║ 23.14 § 16.43 24.31 § 18.97 21.61 § 16.50 23.65 § 17.64

Colon 85.74 § 9.51║ 84.42 § 7.71 80.03 § 10.94 82.91 § 9.36* 81.82 § 9.39 80.45 § 10.21 14.14 § 15.44 9.22 § 8.55║ 19.34 § 16.98 17.11 § 16.49 25.65 § 36.03 19.70 § 17.20

Small bowel 86.42 § 8.36║ 68.54 § 11.88 82.21 § 8.33 84.56 § 8.09* 82.70 § 8.66 82.00 § 9.36 8.49 § 9.43 7.28 § 6.88║ 11.44 § 8.70 9.66 § 9.07 11.48 § 9.04 11.10 § 9.43

Rectum 80.06 § 12.43 78.08 § 12.24 78.19 § 11.59 78.85 § 12.35y 80.51 § 10.12║ 76.92 § 11.02 14.06 § 12.36 14.12 § 11.71 15.28 § 15.79 14.40 § 11.75 13.29 § 10.46║ 17.18 § 29.77

Bladder 93.14 § 7.51║ 91.1 § 9.85 90.33 § 12.45 91.22 § 11.15* 91.46 § 11.82 90.48 § 11.06 4.56 § 7.80║ 14.87 § 53.42y 25.97 § 73.62 7.00 § 13.48 19.96 § 62.55 16.69 § 53.41

Femur_L 91.87 § 4.03║ 90.46 § 9.36 90.84 § 4.22 91.59 § 4.49 91.86 § 4.59 88.96 § 5.60 15.50 § 56.57║ 23.6 § 85.71 25.06 § 91.52 17.45§ 70.20 21.28 § 81.89 132.8 § 171.6

Femur_R 92.40 § 4.56║ 90.56 § 9.2 91.00 § 5.01 91.72 § 4.37 92.02 § 4.48 89.91 § 5.70 11.32 § 30.85║ 25.32 § 88.26 25.38 § 92.43 28.50 § 95.49 25.99 § 89.30 88.89 § 150.7

Average 86.73║ 84.39 82.11 84.67* 84.66 82.82 8.92║ 12.50* 16.44 13.12 13.00 23.22

Data were denoted as mean § SD. Bold numbers represent the best results. P values were obtained by comparing our method with the best one among the 5 previous methods according to the overall average
DSC.

Abbreviations: Att = attention-UNet; DSC = Dice similarity coefficient; HD95 = 95th percentile Hausdorff distance; OAR = organ at risk.
* P < .001
y P < .05
z P < .01
x Four patients underwent gallbladder resection, so the number of gallbladders was 124.
║ Best results.
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Fig. 2. Visualization of 2 randomly selected patients from internal testing cohort 1 and external testing cohort 2, respec-
tively.
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showed the most accuracy in 66.7% (10/15) of OARs. The
whole mHD95s of AbsegNet, SwinUNETR, DeepLabV3+,
Attention-UNet, UNet, and 3D-UNet were 12.40, 23.77,
22.06, 15.72, 24.28, and 25.46 mm, respectively.
Performance of AbsegNet in all cohorts

We examined the performance of AbsegNet in 2 data sets,
including cohorts 1, 2, and 3. The mDSC and mHD95 of
each OAR for all patients are shown in Fig E4. The mDSC
of 8 OARs exceeded 90%, whereas only 2 OARs had an
mDSC of <80% (adrenals and duodenum). For HD95, 9 out
of 16 OARs had an mHD95 of <10 mm, whereas only 3
OARs were >15 mm (colon, duodenum, and femur_L).
Performance of AbsegNet in different types of
organs

The 16 OARs were divided into 4 groups according to mor-
phologic structures and size: solid organs (liver, spleen, kid-
neys, and pancreas), gastrointestinal organs (esophagus,
stomach, duodenum, colon, small bowel, rectum, and blad-
der), bone tissues (femurs), and small organs (gallbladder
and adrenals). Then, the performance of AbsegNet was
examined in these 4 groups. The exact results are listed in
Table E7. Of these cohorts, all mDSC were >90% for solid
organs and bone tissues, all mDSC exceeded 80% in gastro-
intestinal organs, and all mDSC were >75% in small organs.
Clinical assessment of contours produced by
AbsegNet

When using our 4-grading criteria to assess contour accu-
racy, all patients with AbsegNet-produced contours for kid-
neys, bladder, and femur_L were deemed satisfactory by the
expert, with no or minor revisions in cohort 4 (Table 4).
However, 25% (n = 10) and 10% (n = 4) of patients with
AbsegNet-produced duodenum were considered to have
moderate and major revisions, respectively (Table 4). Simi-
larly, in cohort 5, AbsegNet-generated contours for the liver
and spleen in all patients were not required to be revised,
and over 87.5% of patients with contours of the stomach,
esophagus, adrenals, and rectum were considered satisfac-
tory, with no or minor revisions (Table 4). Only 2 (6.2%), 5
(15.6%), and 4 (12.5%) patients with autosegmentations of
the gallbladder, colon, and small bowel, respectively,
required major revisions (Table 4). A visual display of



Table 3 Accuracy comparison in cohort 2 (n = 24)

Variable
DSC (%) HD95 (mm)

OAR AbsegNet SwinUNETR DeepLabV3+ Att UNet 3D-UNet AbsegNet SwinUNETR DeepLabV3+ Att UNet 3D-UNet

Liver 96.75 § 1.21x 90.52 § 15.86 92.94 § 5.93 92.71 § 9.72 91.79 § 10.77* 89.53 § 18.85 4.14 § 3.93x 15.32 § 17.85 10.75 § 11.19 11.16 § 16.33* 12.14 § 12.65 15.86 § 19.16

Spleen 91.50 § 11.27x 86.81 § 14.85 89.78 § 10.34 88.81 § 13.25 90.04 § 12.94 90.13 § 7.52 12.92 § 22.47x 33.54 § 56.53 13.45 § 20.29 13.98 § 21.75 19.64 § 36.07 13.41 § 19.97

Kidney_L 94.91 § 2.14x 89.81 § 8.69 91.76 § 12.41 92.94 § 6.69 92.30 § 12.22 91.91 § 7.26 5.60 § 12.44 32.27 § 47.48 4.02§ 3.66x 3.92 § 3.17 4.76 § 5.49 10.83 § 20.26

Kidney_R 95.13 § 1.15x 91.23 § 6.43 92.78 § 8.40 93.24 § 5.11 93.43 § 7.21 93.36 § 4.13 2.65 § 0.76x 31.25 § 62.95 3.61§ 2.22 6.67 § 15.44 5.41 § 10.90 4.67§ 6.07

Stomach 86.45 § 14.42x 67.62 § 27.35 75.47 § 22.71 67.11 § 27.16 72.81 § 25.16y 61.32 § 29.86 12.43 § 14.03x 31.54 § 35.77 22.64 § 18.22 27.98 § 22.66y 25.31 § 16.09 32.96 § 28.19

Gallbladder 87.85 § 6.36x 74.23 § 28.67 79.13 § 16.45 78.03 § 20.53 77.43 § 20.47z 72.51 § 23.77 6.93 § 14.15x 23.42 § 76.39 10.33 § 16.78 10.28 § 16.39 10.32 § 14.95 11.02 § 16.73

Esophagus 79.90 § 4.56x 78.23 § 5.82 71.24 § 12.05 74.50 § 8.97 75.58 § 10.00z 69.89 § 13.44 5.35 § 3.01x 16.1 § 49.74 11.54 § 12.89 45.34 § 90.36* 10.68 § 13.17 9.36§ 6.70

Pancreas 81.32 § 9.68x 75.51 § 13.43 74.12 § 14.14 73.40 § 18.10 76.05 § 14.89* 72.47 § 16.54 7.91 § 7.36x 17.58 § 19.11 12.93 § 8.15 15.05 § 13.85z 13.48 § 10.86 19.05 § 18.91

Adrenals 70.87 § 11.66x 59.32 § 19.3 46.11 § 13.05 62.93 § 17.22 68.00 § 11.96* 66.26 § 11.92 6.19 § 3.56x 30.31 § 17.8 65.06 § 7.98 7.42 § 4.52 6.87 § 3.59 6.79§ 4.06

Duodenum 63.40 § 19.62 81.84 § 8.39x 54.75 § 20.29 58.03 § 21.19 60.80 § 19.43 56.88 § 20.42 23.73 § 13.52 28.76 § 44.95 26.46 § 18.91 34.23 § 23.70* 23.02 § 15.72x 42.34 § 68.51

Colon 85.82 § 5.64x 66.79 § 18.77 78.91 § 8.47 79.98 § 9.06 81.86 § 5.54y 78.33 § 14.94 12.24 § 8.17x 23.24 § 16.16 18.76 § 8.70 21.18 § 12.74y 29.87 § 39.42 19.41 § 11.51

Small bowel 82.41 § 9.50x 68.18 § 10.31 63.80 § 17.85 67.87 § 16.39 68.73 § 14.88y 63.92 § 17.30 14.33 § 13.73x 7.0 § 4.23 20.52 § 9.44 17.63 § 9.05 26.74 § 51.21 19.34 § 9.92

Rectum 83.02 § 6.42 82.06 § 6.6 81.74 § 7.77 81.58 § 13.24 83.30 § 6.48x 79.57 § 15.72 10.53 § 7.69x 15.66 § 19.66 11.00 § 10.08 10.91 § 11.14 32.77 § 105.80 11.29 § 10.62

Bladder 87.74 § 18.25x 81.48 § 26.98 84.97 § 17.67 82.71 § 25.46 84.72 § 19.75 85.08 § 20.98 6.51 § 8.07x 33.36 § 120.12 25.86 § 79.16 10.55 § 14.56 41.72 § 94.01 62.64 § 144.60

Femur_L 93.14 § 2.79x 89.09 § 6.45 90.75 § 4.11 91.01 § 7.30 91.68 § 19.75 82.15 § 16.76 13.31 § 46.50x 39.62 § 53.69 37.26 § 54.82 22.15 § 63.90 28.69 § 44.01 45.19 § 45.11

Femur_R 90.22 § 11.00 85.52 § 17.93 87.76 § 7.25 90.85 § 10.68x 89.71 § 6.21 87.95 § 15.50 18.04 § 43.91 48.34 § 58.75 37.69 § 52.65 11.02 § 20.71x 30.62 § 40.68 32.06 § 48.48

Average 85.65x 79.27 78.51 79.73 81.14y 77.58 10.18x 26.71 20.62 16.84y 20.13 22.26

Data were denoted as mean § SD. P values were obtained by comparing our method with the best one among the 5 previous methods according to the whole average DSC.
Abbreviations: Att = attention-UNet; DSC = Dice similarity coefficient; HD95 = 95th percentile Hausdorff distance; OAR = organs at risk.

* P < .05
y P < .001
z P < .01
x Best results.
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Table 4 Clinical accuracy evaluation for each OAR in cohorts 4 and 5

Cohort 4 (n = 40)
No revision
(n, %)

Minor revision
(n, %)

Moderate revision
(n, %)

Major revision
(n, %)

Kidney_L 40 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Kidney_R 40 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Pancreas 32 (80.0%) 6 (15.0%) 2 (5.0%) 0 (0.0%)

Duodenum 7 (17.5%) 19 (47.5%) 10 (25.0%) 4 (10.0%)

Bladder 38 (95.0%) 2 (5.0%) 0 (0.0%) 0 (0.0%)

Femur_L 39 (97.5%) 1 (2.5%) 0 (0.0%) 0 (0.0%)

Femur_R 35 (87.5%) 3 (7.5%) 1 (2.5%) 0 (0.0%)

Cohort 5 (n = 32)

Liver 32 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Spleen 32 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Stomach 23 (71.9%) 6 (18.8%) 3 (9.3%) 0 (0.0%)

Gallbladder 21 (65.7%) 6 (18.8%) 3 (9.3%) 2 (6.2%)

Esophagus 27 (84.4%) 2 (6.3%) 3 (9.3%) 0 (0.0%)

Adrenals 13 (40.6%) 15 (46.9%) 4 (12.5%) 0 (0.0%)

Colon 16 (50.0%) 7 (21.9%) 4 (12.5%) 5 (15.6%)

Small bowel 23 (71.9%) 4 (12.5%) 1 (3.1%) 4 (12.5%)

Rectum 24 (75.0%) 4 (12.5%) 4 (12.5%) 0 (0.0%)

Abbreviation: OAR = organ at risk.
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AbsegNet-generated OARs revised by experts is presented
in Fig E5.

In addition, 2 experts together subjectively evaluated
each OARs predicted by AbsegNet from the 25 patients. All
patients with AbsegNet-generated liver, spleen, and kidney
predictions were considered completely acceptable (Table
E8). Only 2 (8.0%), 2 (8.0%), 5 (20.0%), 3 (12.0%), and 2
(8.0%) patients with autosegmentations of the stomach,
adrenals, duodenum, colon, and small bowel, respectively,
were considered as clinically unacceptable (Table E8).

We recorded the time spent by expert A to delineate 16
OARs in each of the 10 patients. With the assistance of
AbsegNet, the expert spent, on average, 12.04 § 2.93
minutes to delineate 1 patient. However, without assistance
from AbsegNet, the delineation time was significantly
increased to an average of 39.73 § 3.38 minutes per case (P
< .001) (Fig. E6).
Discussion
In this study, we aimed to develop a novel DL model to seg-
ment OARs for abdominal radiation therapy accurately and
robustly. At first, large-scale and multicenter CT scans were
collected, and a training cohort with high-quality annota-
tions was used to train AbsegNet. Then, a comprehensive
model performance evaluation was conducted across 5 dif-
ferent institutions, including a clinical assessment. These
results showed that AbsegNet achieved state-of-the-art per-
formance in seen subjects and generalized well to unseen
subjects. Compared with 5 previous sophisticated DL meth-
ods, the accuracy of most OARs produced by AbsegNet was
higher. And considering all OARs as a whole, AbsegNet
demonstrated the best performance. When experts evalu-
ated these autosegmentations, most OARs were considered
satisfactory with no or minor revisions, suggesting that
AbsegNet-generated contours were clinically acceptable.

In recent years, many fully automatic segmentation mod-
els have been proposed to delineate OARs in the
abdomen.8,9,32,33 Nevertheless, robust segmentation of
OARs remains a challenge in real-world clinical scenarios.
Most existing data sets using abdominal organ segmentation
vary in size (from dozens to hundreds) and the number of
annotations (single or several).10 For instance, the BTCV
(Beyond The Cranial Vault) provided only 50 CT scans cov-
ering 13 organs.34 Although the AbdomenCT-1K offered
over 10,000 CT scans, only 4 organs were included.10

Besides, some data sets only included a single disease, such
as all patients with gastric cancer.33 Considering underrep-
resentation problems in those data sets, using those models
to directly segment abdominal OARs for radiation therapy
is not easy. Compared with previous data sets,1,9,14,35,36 the
data sets included in this study were more advantageous
from the following aspects: (1) large-scale: data sets con-
tained over 500 CT scans covering nearly all abdominal and
pelvic OARs; (2) diverse and clinically relevant: the data sets
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used in this study were collected from real-world clinical
settings; for example, these patients had various abdominal
primary or metastatic tumors, were scanned by different
scanners at different medical centers, and both contrast and
non-contrast CT images were included; and (3) high-quality
annotations: principles for OAR delineation in this study
were in line with recommendations of the Radiation Ther-
apy Oncology Group,16,17 with small intraobserver variabil-
ity, making them more suitable for radiation treatment
planning. Parts of the carefully annotated data set of 16
organ annotations (150 volumes from the development
cohort and 20 volumes from LiTS2017) will be released to
boost this research task. In short, our data sets are more
promising for developing a robust segmentation model for
clinical application.

We propose combining data augmentation and knowl-
edge distillation for deep network training to obtain accu-
rate and robust segmentations. First, a series of data
augmentation strategies could simulate more challenging
scenarios to boost the robustness of networks. Furthermore,
we used knowledge distillation to minimize the difference
between the teacher and the student. In general, the stu-
dent’s input is more challenging than that of the teacher,
and the teacher’s output is more accurate than that of the
student. We encouraged student outputs to be consistent
with their teachers, reminding them to pay more attention
to the common anatomic context rather than the variance
of the intensity distribution. Based on these approaches, the
AbsegNet can learn from 1 data center and generalize well
to many unseen centers. Different from those previous
works, which focused on improving network performance
on a single data center,23-25 the AbsegNet considered the
domain shift between different centers and used data aug-
mentation and knowledge distillation to boost the models’
generalization. In addition, the proposed training strategy
can improve performance by a large margin compared with
the standard 3D-UNet model,23 further suggesting the effi-
ciency and effectiveness of the proposed approach.

After finishing construction and training, the perfor-
mance of AbsegNet was first validated in cohort 1. It was
demonstrated that good segmentation results were acquired
for most OARs, with the exception of the duodenum and
adrenals. Volumetric overlaps between AbsegNet-generated
and ground truth contours were around 95% for solid
organs (liver, spleen, and kidneys). And for all OARs, overall
mDSC reached 87%, and overall mHD95 was lower than
10 mm. In contrast to previous DL methods, AbsegNet was
prone to generate more accurate contours for most OARs,
particularly for gastrointestinal organs that are difficult to
delineate because of their huge and variable spatial informa-
tion.

AbsegNet was tested on 2 completely unseen data
acquired from 2 hospitals. In such heterogeneous data,
AbsegNet still acquired comparable segmentation results,
with the mDSC approaching that which was obtained in the
internal cohort 1 (overall mDSC, cohorts 1, 2, and 3: 86.73%
vs 85.65% vs 88.04%), and it outperformed 5 existing
methods. On the contrary, the performance of previous
algorithms was unstable, affected by data differences. As
observed, the mDSC of Attention-UNet in cohort 1 was
84.67%. However, mDSC considerably reduced to 79.63% in
cohort 3. Moreover, compared with previous methods,
AbsegNet achieved smaller standard deviations for DSC and
HD95 overall, suggesting AbsegNet is less affected by indi-
vidual differences and confirming its robustness for delin-
eating abdominal OARs.

Comparable accuracy was obtained in AbsegNet by con-
trasting with historical results for multiple abdominal OAR
delineation. It should be noticed that our results were
acquired on heterogeneous CT scans and patients, more
closing to the clinical setting, whereas those1,9 were acquired
on more homogeneous data. As indicated, different scanners
and CT phases on patients with heterogeneous lesions could
lead to obvious variances in organ appearances, resulting in
a degradation of model performance. Hence, results showed
the powerful generalizability of AbsegNet.

To further confirm the accuracy of AbsegNet clinically, 2
independent experts were invited to review AbsegNet-gen-
erated OARs. AbsegNet-produced contours for solid organs
(liver, kidneys, and spleen) of all patients did not need to be
modified. Only 15.6%, 12.5%, 10%, and 6.2% of patients
with autosegmentations of the colon, small bowel, duode-
num, and gallbladder, respectively, required major revisions.
For other OARs, only a small portion of patients needed
minor or moderate revisions. In a subjective evaluation by
the 2 experts together, only several patients with OARs,
such as duodenum, adrenals, and colon, were unacceptable,
whereas most patients with most OARs were considered
totally acceptable or acceptable. Moreover, we showed that,
with the aid of the model, delineating efficiency was sub-
stantially improved, saving the delineation time by as much
as over 65%. These results indicated that most OARs pro-
duced by AbsegNet were clinically applicable and could be
used for radiation therapy.

This study had several limitations. First, to improve the
consistency of OAR delineation, only 1 experienced expert
was invited to delineate these contours, which introduced
potential subjective variation. Second, although most OARs
obtained high accuracy, the performance of AbsegNet on
the duodenum was unsatisfactory. The possible reason
might be that the duodenum has the most complex ana-
tomic structure, consisting of 4 parts: the superior, the
descending, the horizontal, and the ascending. Hence, the
organ volume and location can vary dramatically, posing a
great challenge for DL models. Similar results were also
observed in the study by Gibson et al,14 with an mDSC of
63%. There is much room to improve the segmentation
accuracy for this organ. In the future study, we are going to
experiment with different loss functions to optimize our
model, hoping to obtain better results on lower-performing
structures. Third, when performing a clinical evaluation, 2
experts were required to review complementary OARs (7
OARs for expert A and 9 OARs for expert B) in 2 cohorts
rather than each checking all OARs in each cohort because
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of the heavy workload and time requirements. This might
have had a certain effect on the evaluative accuracy of
AbsegNet. Alternatively, pelvic bone delineation was not
involved in this study, though it is also an important OAR
for abdominal radiation therapy.37 We propose to incorpo-
rate it in future research.
Conclusions
In summary, we proposed a novel, fully automatic DL
model to delineate whole abdominal OARs. Despite hetero-
geneous CT scans and individual differences, our findings
showed that most OARs produced by AbsegNet were
accurate and robust. It is clinically applicable and helpful to
facilitate radiation treatment planning and workflow with
ongoing efforts.
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