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Abstract
Deep learning-based semi-supervised learning (SSL) algo-
rithms have led to promising results in medical images seg-
mentation and can alleviate doctors’ expensive annotations
by leveraging unlabeled data. However, most of the exist-
ing SSL algorithms in the literature tend to regularize the
model training by perturbing networks and/or data. Observ-
ing that multi/dual-task learning attends to various levels
of information which have inherent prediction perturbation,
we ask the question in this work: can we explicitly build
task-level regularization rather than implicitly constructing
networks- and/or data-level perturbation and then regular-
ization for SSL? To answer this question, we propose a
novel dual-task-consistency semi-supervised framework for
the first time. Concretely, we use a dual-task deep network
that jointly predicts a pixel-wise segmentation map and a
geometry-aware level set representation of the target. The
level set representation is converted to an approximated seg-
mentation map through a differentiable task transform layer.
Simultaneously, we introduce a dual-task consistency regu-
larization between the level set-derived segmentation maps
and directly predicted segmentation maps for both labelled
and unlabeled data. Extensive experiments on two public
datasets show that our method can largely improve per-
formance by incorporating unlabeled data. Meanwhile, our
framework outperforms the state-of-the-art semi-supervised
learning methods. The implementation of this work is avail-
able at: https://github.com/HiLab-git/DTC. In addition, the
re-implemented comparison methods are also available at:
https://github.com/HiLab-git/SSL4MIS.

Introduction
Accurate and robust segmentation of organs or lesions from
medical images plays an essential role in many clinical ap-
plications such as diagnosis and treatment planning (Masood
et al. 2015). With a large amount of labelled data, deep learn-
ing has achieved state-of-the-art performance on automatic
image analysis (Long, Shelhamer, and Darrell 2015; Chen
et al. 2018; Song et al. 2020). For medical images, how-
ever, annotations are often expensive to acquire as both ex-
pertise and time are needed to produce accurate annotations,
especially in 3D volumetric images. To reduce the labelling
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cost, recently, many methods are proposed to develop a high-
performance model for medical image segmentation with
less labelled data. For example, combining user interac-
tion with a deep neural network to perform image segmen-
tation interactively can reduce the labelling efforts (Wang
et al. 2018a,b). Self-supervised learning approaches utilize
unlabeled data to train models in a supervised manner to
learn fundamental knowledge for knowledge transfer (Zhu
et al. 2020). Semi-supervised learning framework obtains
high-quality segmentation results by learning from a limited
amount of labelled data and a large set of unlabeled data di-
rectly (Li et al. 2020; Qiao et al. 2018; Zhou et al. 2019b;
Xia et al. 2020; Masood et al. 2019). Weakly supervised
learning methods learn from bounding boxes, scribbles or
image-level tags for image segmentation rather than using
pixel-wise annotation, which reduces the burden of annota-
tion (Dai, He, and Sun 2015; Lin et al. 2016; Lee et al. 2019).
In this work, we focus on the semi-supervised segmentation
methods, as it is more practical to acquire a small set of fully
annotated images with a large set of unannotated images.

Many recent successful SSL methods (Yu et al. 2019; Li
et al. 2020; Nie et al. 2018; Li, Zhang, and He 2020) incor-
porate unlabeled data by performing unsupervised consis-
tency regularization. To be specific, they can either add small
perturbations to the unlabeled samples and enforce the con-
sistency between the model predictions on the original data
and the perturbed data (Yu et al. 2019; Li et al. 2020), or
just directly enforce the similar prediction distributions on
the entire unlabeled dataset with an adversarial regulariza-
tion (Nie et al. 2018; Li, Zhang, and He 2020). Thus, we
have learned that the essence of the discussed SSL works is
to enforce the consistency on predictions of unlabeled data
via a regularization term in the loss function.

Among the aforementioned SSL works it is delighted to
see Li, Zhang, and He (2020) developed a multi-task net-
work containing the pixel-wise and the shape-aware predic-
tion branches, similar to previous fully supervised works
(Wang et al. 2020; Xue et al. 2020). And for SSL, they
consider only the shape branch to build the consistent con-
straints via an adversarial regularization to make prediction
distributions on the entire unlabeled dataset smooth, which
still belongs to data-level regularization. We observe that
various levels of information from different task branches



can complement each other during training, while different
focuses can lead to inherent prediction perturbation. For ex-
ample, if the predictions from pixel-wise branch and shape-
aware branch are finally evaluated under the same criterion,
we will definitely obtain different results i.e. the prediction
perturbations between different tasks. Then we ask the most
significant question in this work: can we explicitly build
task-level regularization totally different from previous data-
level regularization? Apparently, the answer is yes, on the
condition that the output of different task branches should
be mapped/transformed to the same predefined space, where
we are capable of explicitly enforcing the consistency regu-
larization between two prediction maps.

To this end, we propose a novel dual-task consistency
model for semi-supervised medical image segmentation.
Our main idea is to build consistency between a global-level
level set function regression task and a pixel-wise classifi-
cation task to take geometric constraints into account and
utilize the unlabeled data. Our framework consists of three
parts: the first part is a dual-task segmentation network.
Specifically, we model a segmentation problem as two dif-
ferent representations (tasks): predicting a pixel-wise clas-
sification map and obtaining a global-level level set func-
tion where the zero level let is the segmentation contour.
We use a two-branch network to predict these two repre-
sentations, and using a CNN to predict level set function
is inspired by (Ma et al. 2020; Ma, He, and Yang 2020;
Xue et al. 2020) to embed global information and geometric
constraints into a network for better performance. The sec-
ond part of this framework is a differentiable task transform
layer. We use a smooth Heaviside layer (Xue et al. 2020) to
convert the level set function to a segmentation probability
map in a differentiable way. The third part is a combina-
tion loss function for supervised and unsupervised learning,
where we design a dual-task-consistency loss function to
minimize the difference between the predicted pixels-wise
segmentation probability map and the probability map con-
verted from the level set function, which can be used to boost
the performance of fully supervised learning and also can
be used to utilize the unlabeled data for unsupervised learn-
ing efficiently. Our proposed framework has been applied
to two different semi-supervised medical image segmenta-
tion tasks: left atrium segmentation from MRI and pancreas
segmentation from CT. Experimental results indicate that
our proposed algorithm can improve segmentation accuracy,
compared to other state-of-the-art semi-supervised segmen-
tation methods. Overall, we present a simple yet efficient
semi-supervised medical image segmentation method with
dual-task consistency, which leverages the unlabeled data by
encouraging consistent predictions of the same input under
different tasks. Our findings during experiments include:

1) In the fully supervised setting, our dual-task consistency
regularization outperforms the separate and joint supervi-
sion of dual tasks.

2) In the semi-supervised setting, the proposed framework
outperforms state-of-the-art semi-supervised medical im-
age segmentation frameworks on several clinical datasets.

3) Compared with existing methods, the proposed frame-

work requires less training time and computational
cost. Meanwhile, it is directly applicable to any semi-
supervised medical image segmentation scene and can
easily be extended to use additional tasks given that there
exists a differentiable transform between/among tasks.

Related Works
Semi-Supervised Medical Image Segmentation: For
semi-supervised medical image segmentation, traditional
methods mainly use hand-crafted features to design a model
to perform segmentation, which includes the prior-based
models (You et al. 2011) and the clustering-based mod-
els (Portela, Cavalcanti, and Ren 2014). The performance
of the hand-crafted features-based models often relies on
the hand-crafted features’ representation capacity. For ex-
ample, the prior-based models need to design specific prior
information for different organs, which can hardly general-
ize to other organs. The clustering-based models are often
parameter-sensitive and not robust enough, which leads to
poor prediction for objects with large shape variance.

With the ability to learn high-level semantic features au-
tomatically, deep learning has been widely used for med-
ical image segmentation (Ronneberger, Fischer, and Brox
2015). Recently, almost all semi-supervised medical im-
age segmentation frameworks are based on deep learning.
Bai et al. (2017) developed an iterative framework where
in each iteration, pseudo labels for unannotated images are
predicted by the network and refined by a Conditional Ran-
dom Field (CRF) (Krähenbühl and Koltun 2011), then the
new pseudo labels are used to update the network. Using
adversarial learning to utilize unlabeled data is also a pop-
ular way for semi-supervised medical image segmentation.
Zhang et al. (2017) proposed a new deep adversarial net-
work (DAN) model for biomedical image segmentation by
encouraging the segmentation of unannotated images to be
similar to those of the annotated ones. Yu et al. (2019)
extended the mean teacher model (Tarvainen and Valpola
2017) with uncertainty map guidance for semi-supervised
left atrium segmentation. Li, Zhang, and He (2020) intro-
duced a shape-aware semi-supervised segmentation strategy
to leverage the unlabeled data and to enforce a geometric
shape constraint on the segmentation output. Differently,
our method takes advantage of geometric constraints and
dual-task consistency, which is simple yet effective for semi-
supervised medical image segmentation.

Consistency Regularization: Consistency regularization
plays a vital role in computer vision and image process-
ing, especially in semi-supervised learning. For example,
Sajjadi, Javanmardi, and Tasdizen (2016) proposed a regu-
larization with stochastic transformations and perturbations
for deep semi-supervised learning and learned from unla-
beled images by minimizing the difference between the pre-
dictions of multiple passes of a training sample. Tarvainen
and Valpola (2017) introduced a teacher-student consistency
model to make full use of the unlabeled data, where the stu-
dent model learns from the teacher model by minimizing the
segmentation loss on the labelled data and the consistency
loss with respect to the targets from the teacher model on all



Figure 1: Overview of the proposed dual-task-consistency framework for semi-supervised medical image segmentation. The
network consists of a pixel-wise classification head (task1) and a level set function regression head (task2), which employs a
widely-used encoder-decoder network as the backbone, i.e., VNet (Milletari, Navab, and Ahmadi 2016). The model is optimized
by minimizing supervised losses LDice, LLSF on labelled data and the dual-task-consistency loss LDTC on both unlabeled data
and labelled data. The T function is used to transform the ground truth label map into a level-set representation for supervised
training. The T−1 function converts the level set function to a probability map to calculate the LDTC .

input data. Jeong et al. (2019) used consistency constraints
as a tool for enhancing detection performance by making full
use of available unlabeled data. Li et al. (2020) introduced
a transformation-consistent based semi-supervised segmen-
tation method, which encourages consistent predictions of
the network-in-training for the same input under different
perturbations. However, these works just consider the con-
sistency when the input is under different perturbations and
transformations, which ignore the consistency of different
tasks. In addition, these methods need to perform forward
passes two or more times for calculating the consistency
loss, which increases the computational cost and running
time. More recently, Zamir et al. (2020) utilized the con-
sistency across different tasks based on inference-path in-
variance, indicating it is promising to investigate task con-
sistency. The limitation is that they require labelled data in
a fully supervised manner and are only studied on low-level
vision tasks. In contrast to the aforementioned methods, our
framework aims to utilize the unlabeled data by minimiz-
ing the consistency between two tasks of a network, which
considers the difference of different tasks and just needs to
perform inference once. To the best of our knowledge, our
work is the first to construct the task-consistency constraint
for semi-supervised learning.

Methods
In this section, we introduce our proposed semi-supervised
medical image framework based on dual-task-consistency.
The overall framework is illustrated in Figure 1, which con-
sists of two heads, the classification head for pixel-wise
probability map and the regression head for level set rep-
resentation of the target. The segmentation network takes a
3D medical image as input, and predicts the level set func-

tion and pixel-wise probability map at the same time. As a
segmentation result can be represented by both a pixel-level
label map and a high-level contour related to a level set func-
tion, these two predictions should be consistent for the seg-
mentation task. To utilize the unlabeled data, we propose a
novel dual-task-consistency strategy, which learns from un-
labeled data by minimizing the difference between the pre-
dicted pixel-wise label and the level set function. To build
the consistency, a transform layer is used to convert the level
set function to a pixel-wise probability map, which is im-
plemented by smooth Heaviside function. In the following
two subsections, we first introduce the dual-task consistency
strategy, then introduce the semi-supervised training for seg-
mentation through dual-task consistency.

Dual-task Consistency: In general semi-supervised
learning, consistency losses are designed to encourage
smooth predictions in a data-level, i.e. the predictions of
same data under different transformations (Li et al. 2020)
and perturbations (Ouali, Hudelot, and Tami 2020) should
be the same. In contrast to data-level consistency, we
enforce the task-level consistency between the pixel-level
classification task, defined as task1 and the level set regres-
sion task, defined as task2. In existing works, pixel-wise
classification for segmentation has been widely studied
while level-set function (Li et al. 2005) is a traditional
task that captures geometric active contours and distance
information, which rejuvenates recently when combined
with CNN (Wang et al. 2020). We introduce the level set
function defined as follows:



Algorithm 1 Semi-supervised training through Dual-task
consistency,

Input: xi ∈ Dl +Dn, yi ∈ Dl

Output: Dual-task model’s parameter θ1 for segmentation
head, θ2 for level-set function (LSF) head and θ for
shared-weights backbone network

1: f1 (x) = segmentation task branch with shared parame-
ter θ and segmentation head’s parameter θ1

2: f2 (x) = LSF task branch with shared parameter θ and
LSF head’s parameter θ2

3: while stopping criterion not met: do
4: Sample batch bl = (xi,yi) ∈ Dl and b = bl + bu,

where bu = xi ∈ Du

5: Generating LSF ground truth T (yi) according to
Equation. 1

6: Computing dual-task predictions f1 (xi) and
f2 (xi), i ∈ {1, ..., N} where N denotes the batch size

7: Applying task transform layer T −1 (f2(xi)) accord-
ing to Equation. 2

8: LDTC(x) =
1
|b|
∑

xi∈b
∥∥f1(xi)− T −1 (f2(xi))

∥∥2
9: LLSF (x,y) =

1
|bl|
∑

xi,yi∈bl ‖f2(xi)− T (yi)‖2

10: LSeg(x,y) = 1− 1
|bl|
∑

xi,yi∈bl 2
∑

f1(xi)yi∑
f1(xi)+

∑
yi

11: Ltotal = LSeg + LLSF + λdLDTC

12: Computing gradient of loss function Ltotal and up-
date network parameters θ1, θ2 and θ by back propaga-
tion.

13: end while
14: return θ1, θ2 and θ

T (x) =


− inf

y∈∂S
‖x− y‖2, x ∈ Sin

0, x ∈ ∂S
+ inf

y∈∂S
‖x− y‖2, x ∈ Sout

(1)

where x, y are two different pixels/voxels in a segmentation
mask, the ∂S is the zero level set and also represents the
contour of the target object. Sin and Sout denote the inside
region and outside region of the target object. Then we de-
fine T (x) as the task transforms from segmentation map to
level-set function map in Equation. 1. To map the output of
LSF task to the space of segmentation output, it is natural to
think of using an inverse transform of T (x). However, it is
impractical to integrate the exact inverse transform of T (x)
in training due to the non-differentiability. Hence, we utilize
a smooth approximation to the inverse transform of level-set
function, provided that we want to guarantee the values of
Sin are assigned to 1 while those of Sout are assigned to 0 in
the transformed prediction map, which is defined as:

T −1(z) = 1

1 + e−k·z
= σ(k · z) (2)

where z means the level set value at pixel/voxel x. The for-
mulation of T −1(z) is delicate and simple as it is equal to
sigmoid function with the input multiplied by a factor k,
which is selected as large as possible to approximate inverse

transform of T (x). Thus, T −1(z) can easily be implemented
as a modified activate function followed by task2’s output.
Then the differentiability can be proved as follows:

∂T −1

dz
=

(
1

1 + e−k·z

)′
= k · 1

1 + e−kz
·
(
1− 1

1 + e−kz

) (3)

Though such an approximate transform function will map
the prediction space of task2 to be the same as that of task1,
it naturally introduces a task-level prediction difference
since task1 focuses on pixel-level reasoning while task2 at-
tends to geometric structure information. Thus, for input
X from a dataset D, we define the dual-task-consistency
loss LDTC enforcing consistency between task1’s predic-
tion f1(xi) and the transformed map of task2’s prediction
T −1 (f2(xi)) :

LDTC(x) =
∑
xi∈D

∥∥f1(xi)− T −1 (f2(xi))
∥∥2

=
∑
xi∈D

‖f1(xi)− σ (k · f2(xi))‖2
(4)

Semi-supervised training through Dual-Task-
Consistency: Let Dl and Du be the labeled and
unlabeled dataset, respectively. Let D = Dl ∪ Du be
the whole provided dataset. We denote labeled data pair as
(X,Y) ∈ Dl and unlabeled data as X ∈ Du, where Y is
groundtruth segmentation mask. We denote voxel-level pair
as (x, y) ∈ (X,Y). For labelled data Dl, we define the
supervised loss for segmentation task as commonly used
dice loss :

LSeg(x,y) =
∑

xi,yi∈Dl

LDice(xi,yi)

=
∑

xi,yi∈Dl

(1−
2
∑

xj∈xi,yj∈yi
f1 (xi) yi∑

xj∈xi,yj∈yi
f1 (xj) +

∑
yj∈yi

yj
)

(5)

where the summation for
∑

xj∈xi,yj∈yi
denotes voxel-wise

sum in a 3D image, and the summation for
∑

xi,yi∈Dl
de-

notes image-level sum in a dataset. Then we define the su-
pervised loss for LSF task as L2 loss between the predicted
probability map f2(x) and the transformed ground truth map
T (y):

LLSF (x,y) =
∑

xi,yi∈Dl

‖f2(xi)− T (yi)‖2 (6)

It is noteworthy that for annotated images, the ground truth
level set function for the LSF task can be automatically
generated from labelled segmentation mask Y through the
aforementioned task transform function T . The final loss is
defined as:

Ltotal = LSeg + LLSF + λdLDTC (7)

where LSeg and LLSF are only used for labelled data, while
LDTC is used for both labelled and unlabeled data during



Figure 2: 3D Visualization of different training methods for pancreas segmentation. 12 annotated images without unannotated
images were used for training. GT: ground truth. (best viewed in color)

Method Scans used Metrics Cost
Labeled Unlabeled Dice (%) Jaccard (%) ASD (voxel) 95HD (voxel) Params (M) Training time (h)

Seg 12 0 70.63 56.72 6.29 22.54 9.44 2.1
LSF 12 0 71.78 57.55 6.31 20.74 9.44 2.1

Seg + LSF 12 0 73.08 58.65 4.47 18.04 9.44 2.2
Seg + LSF + DTC 12 0 74.84 60.78 2.17 9.34 9.44 2.3

Seg 62 0 81.78 69.65 1.34 5.13 9.44 2.3
LSF 62 0 82.25 70.23 1.18 5.19 9.44 2.5

Seg + LSF 62 0 82.46 70.61 1.22 4.97 9.44 2.5
Seg + LSF + DTC 62 0 82.80 71.05 1.45 4.67 9.44 2.5

Table 1: Ablation study of our dual-task consistency method on the Pancreas CT dataset.

training, and therefore the two tasks can jointly optimize the
network with either labelled data or unlabeled data in a semi-
supervised fashion. Following (Tarvainen and Valpola 2017;
Yu et al. 2019), we use time-dependent Gaussian warming
up function λd(t) = e(−5(1−

t
tmax

)2) to control the balance
between the supervised loss and unsupervised consistency
loss, where t denotes the current training step and tmax

is the maximum training step. The used training algorithm
for semi-supervised segmentation through dual-task consis-
tency is shown in Algorithm. 1.

Experiments and Results
Datasets and Pre-processing: To evaluate the proposed
method, we apply our algorithm to two different datasets.
The first is the left atrial dataset (Xiong et al. 2020), which
consists of 100 3D gadolinium-enhanced MR images, with
a resolution of 0.625 × 0.625 × 0.625mm. Following (Yu
et al. 2019; Li, Zhang, and He 2020), we use 80 scans
for training and 20 scans for validation and apply the
same pre-processing methods. The second is the pancreas
dataset (Roth et al. 2015), which includes 82 abdomen CT
images. Following (Xia et al. 2020), we randomly split them
into 62 images for training and 20 images for testing. In
pre-processing, we use the soft tissue CT window range of
[−125, 275] HU (Zhou et al. 2019a), and resample all im-
ages to an isotropic resolution of 1.0×1.0×1.0mm. Finally,
we crop the images centring at the pancreas region based on
the ground truth with enlarged margins (25 voxels) and nor-
malize them as zero mean and unit variance. In this work,
we report the performance of all methods trained with 20%
labelled images and 80% unlabeled images, which is the typ-
ical semi-supervised learning experimental setting (Xia et al.

2020; Yu et al. 2019; Li, Zhang, and He 2020).

Implementation Details and Evaluation Metrics: We
implement our framework in PyTorch (Paszke et al. 2019),
using an NVIDIA 1080TI GPU. In this work, we use
VNet (Milletari, Navab, and Ahmadi 2016) as the back-
bone for all experiments, and we implement dual-task VNet
by adding a new regression layer at the end of the origi-
nal VNet. The framework is trained by an SGD optimizer
for 6000 iterations, with an initial learning rate (lr) 0.01 de-
cayed by 0.1 every 2500 iterations. The batch size is 4, con-
sisting of 2 labelled images and 2 unlabeled images. Fol-
lowing (Xue et al. 2020), the value of k is set to 1500 in
this work. We randomly crop 112× 112× 80 (3D MRI Left
Atrium) and 96 × 96 × 96 (3D CT Pancreas) sub-volume
as the network input. To avoid over-fitting, we use the stan-
dard on-the-fly data augmentation methods during training
stage (Yu et al. 2019). Note that, in this work, the level set
function is generated before the training phase rather on-the-
fly, since the level set function is transform-invariant, which
as a result significantly speeds up the training procedure. In
the inference phase, we use a sliding window strategy to ob-
tain the final results, with a stride of 18 × 18 × 4 for the
left atrium and 16 × 16 × 16 for the pancreas. At the infer-
ence time, we use the output of the pixel-wise classification
branch as the segmentation result. For a fair comparison, we
do not use any post-processing or ensemble methods. Fol-
lowing (Yu et al. 2019), we use four metrics to quantitatively
evaluate our method, including Dice, Jaccard, the average
surface distance (ASD), and the 95% Hausdorff Distance
(95HD).



Figure 3: 3D Visualization of different semi-supervised segmentation methods under 20% labeled data (best viewed in color).
The first row is a pancreas segmentation result and second row is a left atrium segmentation result.

Figure 4: The pancreas segmentation performance of our
semi-supervised approach with different ratios of labelled
data. The dashed red and lime curves show the performance
of fully-supervised VNet and dual-task VNet respectively,
where they were trained with only the available labelled
data.

The Effects of Different Tasks: To investigate the indi-
vidual impact of different tasks, we first only use labelled
images for training and analyze how the dual-task consis-
tency performs when only labelled images are used. We
trained the network for pancreas segmentation using the 12
labelled data and all 62 labelled data, respectively. We com-
pared different training strategies: 1) only using the branch
for task1 (Seg), 2) only using the branch for task 2 (LSF), 3)
using the two branches for task1 and task2 simultaneously
(Seg + LSF), and 4) and our proposed dual-task consistency
method (Seg + LSF + DTC). The performance of these vari-
ants is listed in Table. 1. It shows that the level set function
regression is helpful for medical image segmentation. It also
can be observed that dual-task consistency consistently im-
proves the performance of the dual-task VNet on 12 labelled
scans and 62 labelled scans. Figure. 2 shows some visualiza-
tion of different training methods, which further, show the
superiority of our proposed dual-task consistency.

Effectiveness of Dual-task-Consistency for Semi-
supervised Learning: Secondly, we performed a study
on the data utilization efficiency of our approach com-
pared to the fully supervised VNet and dual-task VNet
that only use available annotated images for training on
Pancreas CT dataset. We draw the Dice score of the results
in Figure.4. It can be observed that the semi-supervised
method consistently performs better than the supervised
approach in different labelled data settings, demonstrating
that our method effectively utilizes the unlabeled data and
brings performance gains. It also can be found that the
performance gap between the fully supervised method and
the semi-supervised approach narrows as more labelled
images are available, which conforms to common sense.
When the number of labelled data is small, our method
also can obtain a better segmentation result than the fully
supervised method, indicating the promising potential of
our proposed approach for further clinical use.

Comparison with Other Semi-supervised Methods: We
compared our framework with six state-of-the-art semi-
supervised segmentation methods, including deep adver-
sarial network (DAN) (Zhang et al. 2017), entropy min-
imization approach (Entropy Mini) (Vu et al. 2019),
cross-consistency training method (CCT) (Ouali, Hude-
lot, and Tami 2020), mean teacher self-ensembling model
(MT) (Tarvainen and Valpola 2017), uncertainty-aware
mean teacher model(UA-MT) (Yu et al. 2019) and shape-
aware adversarial network (SASSNet) (Li, Zhang, and He
2020). Note that we used the official code and results of
DAN, MT, UA-MT, and SASSNet, and reimplemented the
Entropy Mini and CCT for medical image segmentation,
since the limitation of GPU memory, we used one main de-
coder and three auxiliary decoders as CCT’s implementa-
tion.

We first evaluate our proposed framework on Pancreas
CT. Table. 2 shows the quantitative comparison of these
methods. Compared with fully supervised VNet trained
with only 12 annotated images, all semi-supervised meth-
ods taking advantage of unannotated images improve the
segmentation performance significantly. The MT, UA-MT
and CCT achieve slightly better performance than Entropy
Mini and DAN, demonstrating that perturbation-based con-



Method Scans used Metrics Cost
Labeled Unlabeled Dice (%) Jaccard (%) ASD (voxel) 95HD (voxel) Params (M) Training time (h)

VNet 12 0 70.63 56.72 6.29 22.54 9.44 2.1
VNet 62 0 81.78 69.65 1.34 5.13 9.44 2.3

MT (NeurIPS’17) 12 50 75.85 61.98 3.40 12.59 9.44 2.9
DAN (MICCAI’17) 12 50 76.74 63.29 2.97 11.13 12.09 3.3

Entropy Mini (CVPR’19) 12 50 75.31 61.73 3.88 11.72 9.44 2.2
UA-MT (MICCAI’19) 12 50 77.26 63.82 3.06 11.90 9.44 3.9

CCT (CVPR’20) 12 50 76.58 62.76 3.69 12.92 15.65 4.1
SASSNet (MICCAI’20) 12 50 77.66 64.08 3.05 10.93 20.46 3.9

Ours 12 50 78.27 64.75 2.25 8.36 9.44 2.5

Table 2: Quantitative comparison between our methods and other semi-supervised methods on the Pancreas CT dataset. The
first and second row are our fully supervised baseline, the last row is our proposed method, others are previous methods.

sistency loss is helpful for the semi-supervised segmentation
problem. Moreover, the UA-MT is better than MT, since the
uncertainty map can guide the student model learning effi-
ciently. The SASSNet achieves the top performance among
the existing methods, indicating the shape prior is useful for
semi-supervised image segmentation. Notably, our frame-
work achieves better performance than the state-of-the-art
semi-supervised methods on all the evaluation metrics with-
out using a complex multiple network architecture, corrob-
orating that our dual-task consistency has the full capabil-
ity to draw out the rich information from the unlabeled data.
Meanwhile, our framework does not require any multiple in-
ference or iterative update scheme, which reduces the com-
putational memory cost and running time.

We further validate our proposed method on Left Atrium
MRI data, which is a widely-used dataset for semi-
supervised medical image segmentation (Yu et al. 2019;
Li, Zhang, and He 2020). A quantitative comparison of
these methods is shown in Tabel. 3. It can be found that
our method achieved the best accuracy than other methods
on all the evaluation metrics, especially in terms of ASD
and 95HD. Figure. 3 shows some visualization of pancreas
segmentation and left atrium segmentation. Compared with
other methods, our results have a higher overlap ratio with
the ground truth and produce fewer false positives and pre-
serve more details, which further indicates the effectiveness,
generalization and robustness of our proposed method. Fur-
thermore, we investigated the training cost of different ap-
proaches. The quantitative comparison of the network’s pa-
rameters and training time are listed in Table.2 and Table.3.
It can be observed that our framework requires less training
time than MT, DAN, UAMT, CCT and SASSNet since our
framework uses a simple network with fewer parameters and
does not need to pass an image many times in an iteration.
Compared with Entropy Mini and a fully supervised base-
line, our method achieved better accuracy with comparable
computational costs. Thus, our experiments prove that our
method attains the best accuracy, networks’ parameters and
computational-cost trade-offs.

Discussion and Conclusion
In this paper, we have presented a novel and simple semi-
supervised medical image segmentation framework through
dual-task consistency, which is a task-level consistency-

based framework for semi-supervised segmentation. We use
a dual-task network that simultaneously predicts a pixel-
level classification map and a level set representation of
the segmentation that is able to capture the global-level
shape and geometric information. In order to build a semi-
supervised training framework, we enforce dual-task con-
sistency between classification map prediction and LSF pre-
diction via a task-transform layer. We achieve stat-of-the-art
results on two 3D medical image datasets including the left
atrial dataset in MR scans and the pancreas dataset in CT
scans. The superior performance demonstrates the effective-
ness, robustness and generalization of our proposed frame-
work. In this work, we focus on single-class segmentation
to simplify the presentation. However, our method extends
to the multi-class case in a straightforward manner.

In addition, our proposed method can easily be extended
to use additional tasks such as edge extraction (Zhen et al.
2020) and key-points estimation (Cheng et al. 2020) as long
as there exists a differentiable transform between two tasks.
We also hope to inspire the whole computer vision commu-
nity, as it is possible to construct tasks consistently in a semi-
supervised fashion in many directions such as two-stream
video recognition (Simonyan and Zisserman 2014), multi-
task image reconstruction (Zamir et al. 2018, 2020), image
segmentation and edge detection and etc. to leverage a large
amount of unlabeled data. In the future, we will extend this
method to more computer vision applications to reduce la-
belling efforts and further investigate the fusion strategy to
ensemble all different tasks’ prediction results for better per-
formance.
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Method Scans used Metrics Cost
Labeled Unlabeled Dice (%) Jaccard (%) ASD (voxel) 95HD (voxel) Params (M) Training time (h)

VNet 8 0 79.99 68.12 5.48 21.11 - -
VNet 16 0 86.03 73.26 5.75 17.93 9.44 1.8
VNet 80 0 91.14 83.32 1.52 5.75 9.44 2.0

UAMT(MICCAI’19) 8 72 84.25 73.48 3.36 13.84 - -
SASSNet(MICCAI’21) 8 72 87.32 77.72 2.55 9.62 - -

LG-ER-MT(MICCAI’20) 8 72 85.54 75.12 3.77 13.29 - -
DUWM(MICCAI’20) 8 72 85.91 75.75 3.31 12.67 - -

Ours 8 72 87.51 78.17 2.36 8.23 - -
MT(NeurIPS’17) 16 64 88.23 79.29 2.73 10.64 9.44 3.2

DAN (MICCAI’17) 16 64 87.52 78.29 2.42 9.01 12.09 3.7
Entropy Mini (CVPR’19) 16 64 88.45 79.51 3.72 14.14 9.44 1.9

UA-MT (MICCAI’19) 16 64 88.88 80.21 2.26 7.32 9.44 3.6
LG-ER-MT (MICCAI’20) 16 64 89.62 81.31 2.06 7.16 - -

DUWN (MICCAI’20) 16 64 89.65 81.35 2.03 7.04 - -
CCT (CVPR’20) 16 64 88.83 80.06 2.49 8.44 15.65 3.9

SASSNet (MICCAI’20) 16 64 89.27 80.82 3.13 8.83 20.46 4.4
Ours 16 64 89.42 80.98 2.10 7.32 9.44 2.2

Table 3: Quantitative comparison between our methods and other semi-supervised methods on the Left Atrium MRI dataset.
The first and second rows are our fully supervised baseline, the last row is our proposed method, others are previous methods.
Note:Here, we updated the results using 8 labelled cases and 72 unlabelled cases for easy comparison in the following works.

labelled images on the LA dataset) for easy comparison for
others and we also summarised some re-implementations of
popular SSL methods for medical image segmentation. In
addition, the authors fixed some grammar or typo errors.
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