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a b s t r a c t 

Segmentation of organs or lesions from medical images plays an essential role in many clinical appli- 

cations such as diagnosis and treatment planning. Though Convolutional Neural Networks (CNN) have 

achieved the state-of-the-art performance for automatic segmentation, they are often limited by the lack 

of clinically acceptable accuracy and robustness in complex cases. Therefore, interactive segmentation is 

a practical alternative to these methods. However, traditional interactive segmentation methods require 

a large number of user interactions, and recently proposed CNN-based interactive segmentation methods 

are limited by poor performance on previously unseen objects. To solve these problems, we propose a 

novel deep learning-based interactive segmentation method that not only has high efficiency due to only 

requiring clicks as user inputs but also generalizes well to a range of previously unseen objects. Specif- 

ically, we first encode user-provided interior margin points via our proposed exponentialized geodesic 

distance that enables a CNN to achieve a good initial segmentation result of both previously seen and 

unseen objects, then we use a novel information fusion method that combines the initial segmentation 

with only a few additional user clicks to efficiently obtain a refined segmentation. We validated our pro- 

posed framework through extensive experiments on 2D and 3D medical image segmentation tasks with 

a wide range of previously unseen objects that were not present in the training set. Experimental results 

showed that our proposed framework 1) achieves accurate results with fewer user interactions and less 

time compared with state-of-the-art interactive frameworks and 2) generalizes well to previously unseen 

objects. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Accurate and robust segmentation of organs or lesions from 

edical images plays an essential role in many clinical applications 

uch as diagnosis and treatment planning ( Zhao and Xie, 2013; 

asood et al., 2015 ). Although automatic segmentation methods 

ave been studied for many years, it remains challenging for them 

o obtain a consistently precise segmentation in cases with large 

natomical variation and complex pathologies ( Wang et al., 2018b ). 

his is mainly due to the inherent limitations of medical images, 

uch as low contrast, different imaging and segmentation proto- 
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ols, and variations among patients ( Wang et al., 2018b ). In con- 

rast, interactive segmentation methods, which leverage the user’s 

nowledge and experience to obtain a more accurate and robust 

esult, are more practical and widely used in clinical applica- 

ions ( Zhao and Xie, 2013; Masood et al., 2015; Wang et al., 2018b ).

A desirable interactive segmentation tool should 1) achieve ac- 

urate segmentation results with as few user inputs as possi- 

le, leading to reduced burdens on the user; 2) have high effi- 

iency so that the user can get real-time response, even when 

ealing with volumetric data; 3) generalize well to different ob- 

ects so that it is ready-to-use for new objects or image modal- 

ties. However, existing interactive segmentation methods rarely 

atisfy all these often competing requirements. Many traditional 

nteractive methods use low-level features (e.g., gray level or color 

https://doi.org/10.1016/j.media.2021.102102
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102102&domain=pdf
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istribution) for image segmentation ( Hu et al., 2019 ), such as 

raph Cuts ( Boykov and Jolly, 2001 ), ITK-SNAP ( Yushkevich et al., 

006 ), GeoS ( Criminisi et al., 2008 ), Random Walks ( Grady, 2006 )

nd GrowCut ( Vezhnevets and Konouchine, 2005 ). As low-level 

eatures cannot effectively distinguish the object from the back- 

round in many situations with low contrast ( Hu et al., 2019 ), 

hese methods often require a large amount of user interac- 

ions and long user time to obtain reliable results. To reduce the 

mount of annotations required from the user to build an ade- 

uate foreground/background model, machine learning has been 

idely used to perform interactive segmentation. For example, 

licSeg ( Wang et al., 2016b ) and DyBaORF ( Wang et al., 2016a )

se an Online Random Forest (ORF) to segment the placenta from 

agnetic Resonance Imaging (MRI) volume. GrabCut ( Rother et al., 

004 ) uses Gaussian Mixture Models (GMMs) to estimate the fore- 

round and background distributions. It obtains an initial result 

y a user-provided bounding box around the region of interest 

nd allows additional interactions for refinement. In Wang et al., 

014 , active learning is used to actively select candidate regions 

or querying the user to obtain much informative user feedback 

nd thus reduce user interactions. These algorithms perform bet- 

er than traditional methods without machine learning, but they 

re limited by the use of hand-crafted features ( Wang et al., 2018a; 

018b ). As a result, they still require a considerable amount of user 

nteractions for accurate segmentation. 

Recently, with the ability to learn high-level semantic features 

utomatically, deep learning with Convolutional Neural Networks 

CNNs) has achieved state-of-the-art performance for image seg- 

entation ( Shen et al., 2017; Litjens et al., 2017 ). To take advantage

f the good representation ability of CNNs and overcome the lim- 

ted accuracy and robustness of the automatic CNNs, some deep 

earning-based interactive segmentation tools ( Hu et al., 2019; 

aninis et al., 2018; Rajchl et al., 2016; Wang et al., 2018a,b; Xu 

t al., 2016; Sakinis, Milletari, Roth, Korfiatis, Kostandy, Philbrick, 

kkus, Xu, Xu, Erickson ) have recently been proposed. The meth- 

ds of Hu et al. (2019) , Xu et al. (2016) and Maninis et al.

2018) are designed to segment 2D RGB images interactively and 

ack evaluation on medical images with low contrast and ambigu- 

us boundaries. Castrejon et al. (2017) and Acuna et al. (2018) in- 

egrated reinforcement learning and graph neural networks into a 

nified polygon-based interactive segmentation framework, where 

he user is allowed to drag a point on the polygon for refinement, 

ut its ability to deal with objects with complex shapes and 3D 

edical images is limited. 

In contrast, DeepIGeoS ( Wang et al., 2018b ), IFSeg ( Sakinis et al.,

019 ), DeepCut ( Rajchl et al., 2016 ) and BIFSeg ( Wang et al.,

018a ) are specially designed to segment medical images. Deep- 

ut ( Rajchl et al., 2016 ) uses a set of user-provided bounding boxes

s sparse annotations to train CNNs for the segmentation of fe- 

al brain and lung from fetal MRI. Roth et al. (2019, 2020) com- 

ined extreme points ( Maninis et al., 2018 ) with random walk- 

rs ( Grady, 2006 ) for weakly supervised 3D medical image seg- 

entation. Even though this method and DeepCut ( Rajchl et al., 

016 ) reduced the annotation cost significantly, they were de- 

igned for weakly supervised model training over a large dataset 

ather than interactively editing a single segmentation result at 

est time. Raju et al. (2020) further used extreme points in a user- 

uided domain adaptation method for pathological liver segmenta- 

ion. DeepIGeoS ( Wang et al., 2018b ) performs user-friendly inter- 

ctive segmentation by combining CNNs and user-provided scrib- 

les, where a CNN is used to obtain an initial segmentation and 

nother CNN accepts additional user interactions for refinement. 

owever, DeepIGeoS can only deal with objects present in the 

raining set and lacks adaptability to previously unseen objects. 

ollowing Xu et al. (2016) , IFSeg ( Sakinis et al., 2019 ) takes user

licks and the raw image as input for interactive medical image 
2 
egmentation. Despite the fact that the framework is easy to use, 

t generalizability was only validated with a single previously un- 

een structure, and the ability to deal with various unseen ob- 

ects in different modalities was not shown. BIFSeg ( Wang et al., 

018a ) exploits user-provided bounding boxes and image-specific 

ne-tuning to segment some unseen objects, but it is limited by 

ealing with only few unseen objects in the same image modal- 

ty or similar context and requiring time-consuming fine-tuning for 

ach test image. Therefore, novel interactive frameworks for medi- 

al image segmentation with higher efficiency and generalizability 

s highly desirable. 

Besides, a practical problem for CNN-based interactive segmen- 

ation methods is to effectively encode user interactions, as differ- 

nt encoding strategies have a large impact on the interactive seg- 

entation performance. Most of existing works encode user inter- 

ctions by transforming them into a cue map, such as Euclidean 

istance map ( Benenson et al., 2019; Hao et al., 2019; Hu et al., 

019; Li et al., 2018; Xu et al., 2016 ), Gaussian heatmap ( Maninis

t al., 2018; Wang et al., 2019 ), and iso-contours derived from user 

licks ( Khan et al., 2019 ). However, these encoding methods do 

ot take the image context information into account. In contrast, 

he geodesic distance transform is spatially smooth and contrast- 

ensitive to encode user interactions ( Criminisi et al., 2008; Bai and 

apiro, 2009; Price et al., 2010 ). DeepIGeoS ( Wang et al., 2018b )

ses geodesic distance transform with a specially designed thresh- 

ld to deal with user-provided interactions. However, it is time- 

onsuming to find an appropriate threshold value to truncate the 

enerated geodesic distance map when dealing with different ob- 

ects. We assume that a context-aware and parameter-free encod- 

ng method is helpful for improving the segmentation accuracy and 

eneralizability. 

To tackle the above-mentioned challenges, we propose a new 

eneralizable framework for more intelligent and accurate interac- 

ive segmentation of 2D and 3D medical images, which aims at not 

nly obtaining high performance and efficiency for segmentation of 

reviously seen objects, but also achieving high generalization to a 

ange of previously unseen objects. Our method takes advantage of 

NNs and only requires few clicks as user interactions. We present 

 new way to encode user interactions based on Exponentialized 

eodesic Distance (EGD) transform, which is context-aware and 

arameter-free and helps to improve the segmentation obtained by 

he CNN. We also propose an information fusion method that ef- 

ciently fuses additional user clicks with the initial segmentation 

o obtain a refined segmentation. Differently from existing interac- 

ive medical image segmentation frameworks ( Wang et al., 2018a; 

018b; Rajchl et al., 2016 ), our method is more efficient as it only 

orks on a sub-region of the image and does not need to train an 

dditional CNN on the fly for the refinement. Moreover, we vali- 

ate the effectiveness of this framework with a large range of pre- 

iously seen and unseen objects. The superiority of our method 

ver existing interactive segmentation methods is validated with 

ve types of 2D unseen objects and four types of 3D unseen ob- 

ects from different types of image contexts and modalities. 

. Methods 

The proposed Minimally Interactive Deep learning-based Seg- 

entation framework is referred to as MIDeepSeg and illustrated 

n Fig. 1 . It consists of two stages. In the first stage, the user pro-

ides few clicks near the boundary (i.e., interior margin point) of 

he target object. These points are used to infer a relaxed bound- 

ng box to crop the input image. Based on the cropped image, all 

ser-provided interior margin points are converted to a cue map 

ased on our proposed EGD transform. Then, the cue map is con- 

atenated with the cropped input image as the input of a CNN to 

btain an initial segmentation result. In the second stage, the user 
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Fig. 1. Pipeline of the proposed Minimally Interactive Deep learning-based Segmentation framework (MIDeepSeg). Stage 1: User-provided interior margin points are encoded 

by Exponentialized Geodesic Distance (EGD) maps to guide a CNN to obtain an initial result. Stage 2: Refining the initial segmentation based on additional user clicks and 

our proposed Information Fusion followed by Graph Cut (IF-GC). Note that this framework is ready to use for segmentation of previously unseen objects without the need 

of extra fine-tuning or re-training. 

Fig. 2. Simulation of interior margin points on training images for different shapes of placenta. Fuchsia: simulated clicks on placenta edge. Brown: interior margin points- 

derived relaxed bounding box. Yellow: ground truth. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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rovides some additional clicks to indicate mis-segmented regions, 

nd a refined result is obtained by our proposed Information Fu- 

ion followed by Graph Cuts (IF-GC). At test time, the refinement 

tep can run several times until the result is accepted by the user. 

fter training with a small set of objects, our framework is ready 

o use for the segmentation of previously unseen objects without 

he need for fine-tuning or re-training that is time-consuming and 

equires additional annotations. 

.1. User interaction based on interior margin points 

Many existing CNN-based interactive segmentation frameworks 

se scribbles ( Wang et al., 2018a ) or bounding boxes ( Rajchl et al.,

016 ) or both ( Wang et al., 2018b ) as interactive cues. They need

he user to drag the cursor carefully, which requires a lot of user’s 

ffort s ( Maninis et al., 2018; Papadopoulos et al., 2017 ). Using 

licks as user interactions is a more user-friendly and effective 

ay as demonstrated by previous works ( Maninis et al., 2018; Pa- 

adopoulos et al., 2017; Wang et al., 2019; Xu et al., 2016 ). Re-

ently, Maninis et al., 2018 proposed a framework that only needs 

he user to provide clicks for extreme points (i.e, left-, right-, 

op- and bottom-most pixels) of an object for RGB image seg- 

entation, which reduces the amount of user interactions sub- 

tantially. However, in medical images, the accurate extreme points 

re hard and time-consuming to find, which increases the burden 

n the user, since the target organs or lesions have large vari- 

bility in the size and shape across different patients or imaging 

rotocols, especially in 3D volumetric data. In addition, for irreg- 

lar and concave shapes, extreme points are not enough to cap- 

ure the main shape of the object (as shown in Fig. 2 ), which

an limit the performance of the CNN. To alleviate these limita- 

ions, we propose to use interior margin points as user interac- 

ions, where the user only needs to provide some clicks that are in 

he inner side and close the boundary of the target. Compared with 

EXTR ( Maninis et al., 2018 ) that uses at most four extreme points

nd optionally with one extra point, our interior margin points can 

rovide more shape information for different types of organs with 
3 
omplex and irregular shapes. In addition, putting clicks exactly on 

he object boundary and even extreme points is hard for users at 

est time, and relaxing the clicks to the inner side of the bound- 

ry makes the interactions more friendly and convenient to im- 

lement, which tolerates inaccurate clicks. We relax these points 

owards the inside region because an exponentialized geodesic dis- 

ance transform of these interior margin points can be a good ap- 

roximation of the saliency map of the target object, as shown in 

ig. 3 . Therefore, interior margin points bring potential advantages 

n guiding CNNs to deal with different types of unseen objects as 

ell. 

During training, all interior margin points for each object were 

utomatically simulated based on the ground truth mask and edge 

etector ( Harris et al., 1988 ). The interior margin points are gen- 

rated based on two rules: First, these points should be located in 

he object and near the boundary. Second, a relaxed bounding box 

etermined by these points should cover the entire object region. 

herefore, we simulate the user interaction for a training image in 

wo steps. 1) To ensure that the relaxed bounding box covers the 

hole region of interest, few points on the ground truth bound- 

ry (three or four for 2D objects, five or six for 3D objects) close 

o the extreme points ( Maninis et al., 2018 ) of the target object 

re selected. Then, we randomly sample n points from remaining 

oundary points of the target to provide more shape information, 

here n is a random number from 0 to 5. 2) To simulate real user

licks that may not be accurately positioned on the object bound- 

ry, all these points obtained in step 1 are slightly moved towards 

he inner side of the boundary by several pixels/voxels to obtain 

ur interior margin points. We moved simulated points towards 

he inner side of the target object as the users are asked to put the

nterior margin points in the inner side of the boundary as well. 

nd then, the bounding box determined by these points is relaxed 

y several pixels/voxels to include some background region. Exam- 

les of simulated 2D interior margin points and relaxed bounding 

oxes on training images are shown in Fig 2 . In the test stage, the

ser is required to provide the interior margin points in such a way 

hat they satisfy the above two rules. The relaxed bounding box 



X. Luo, G. Wang, T. Song et al. Medical Image Analysis 72 (2021) 102102 

Fig. 3. Visual comparison of different cue maps generated from user-provided interior margin points. (Fuchsia: interior margin points. Brown: inferred relaxed bounding 

box). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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etermined by user interactions is expanded with a small margin 

o include some contextual information. 

.2. Exponentialized geodesic distance transform 

It is critical for CNN-based interactive methods to encode user 

nteractions efficiently. A desirable encoding method should take 

mage context into account and can be combined with CNNs di- 

ectly without any manually designed parameters. However, exist- 

ng interaction encoding methods such as Euclidean distance trans- 

orm ( Li et al., 2018; Xu et al., 2016 ), Gaussian heatmap ( Maninis

t al., 2018; Wang et al., 2019 ), iso-contours ( Khan et al., 2019 ) and

eodesic distance transform ( Wang et al., 2018b ) do not have these 

erits at the same time. To deal with this problem, we propose a 

ontext-aware and parameter-free encoding method: Exponential- 

zed Geodesic Distance (EGD) transform, which is a combination of 

eodesic distance transform and exponential transform. 

Suppose S s represents the set of pixels/voxels belonging to the 

imulated interior margin points in the training stage or user- 

rovided interior margin points in the testing stage. Let i be a 

ixel/voxel in the input image I, then the unsigned EGD from i to 

 s is: 

GD (i, S s , I) = min 

j∈ S s 
e −D geo (i, j,I) (1) 

 geo (i, j, I) = min 

p∈P i, j 

∫ 1 

0 
‖ 

∇I( p( n ) ) · v (n ) ‖ 

dn (2) 

here P i, j is the set of all paths between pixels/voxels i and j. p

s one feasible path and it is parameterized by n ∈ [ 0 , 1 ] . v (n ) =
p ′ (n ) / 

∥∥p ′ (n ) 
∥∥ is a unit vector that is tangent to the direction of

he path. Note that the EGD here is defined for scalar images 

ut can easily be extended to vector-valued (i.e., multi-channel or 

ulti-modal) images. Fig. 3 shows some examples of cue maps 

btained by different encoding methods applied to some interior 

argin points. It can be observed that EGD-based cue map dif- 

erentiates the foreground from the background better than those 

ased on the other encoding methods. Therefore, it has the po- 

ential to provide more shape, position and context information to 

uide the CNN to obtain a good initial segmentation result. 

.3. Initial segmentation based on cue map and CNN 

In this paper, we focus on designing an efficient and gen- 

ral framework to deal with seen and unseen objects from dif- 

erent types of images. Therefore, our framework does not rely 

n a specific design of CNN structure. To demonstrate its util- 

ty, we use adapted 2D-UNet ( Ronneberger et al., 2015 ) and 3D- 

Net ( Çiçek et al., 2016 ) for 2D and 3D segmentation, respectively. 

e replace the batch normalization layers with instance normal- 

zation layers that has a better adaptability to different kinds of 

mages, and reduce the feature channel numbers by four times to 
4 
alance the performance, memory cost, and time consumption. In 

he training stage, all interior margin points and relaxed bounding 

oxs are automatically simulated based on the ground truth label, 

s described in Section 2.1 . Then all interior margin points are con- 

erted into a cue map that is concatenated with the cropped input 

mage as the input of the CNN, as shown in Fig. 2 . In the test-

ng stage, the user is asked to provide interior margin points for a 

iven target. Then, the CNN can give an initial segmentation result. 

o correct the mis-segmentation, we use a refinement stage with 

nformation fusion between the initial segmentation and additional 

ser clicks, as described in the following. 

.4. Refinement based on information fusion between initial 

egmentation and additional user clicks 

For deep learning-based interactive segmentation, it is im- 

ortant to support refinement of an initial segmentation. Ex- 

sting methods either require an additional model for refine- 

ent ( Acuna et al., 2018; Castrejon et al., 2017; Liao et al., 

020; Wang et al., 2018; Zhou et al., 2019 ) or need to fine-

une the pre-trained model for a specific image ( Wang et al., 

018a ). However, these refinement methods are time and mem- 

ry consuming, and not ready-to-use for unseen objects. In ad- 

ition, Chen et al. (2017) and Kamnitsas et al. (2016) used 

RF ( Lafferty et al., 2001 ) to refine CNN’s prediction automatically. 

owever, these CRF-based ( Lafferty et al., 2001 ) refinement meth- 

ds ( Chen et al., 2017; Kamnitsas et al., 2016 ) were not designed

or interactive segmentation. Differently from these methods, we 

ropose an efficient and simple refinement method based on a 

ovel method for information fusion between initial segmentation 

nd additional user interactions, which generalizes better to pre- 

iously unseen objects without extra fine-tuning and re-training. 

ig. 4 shows an illustration of our information fusion method. 

In the refinement stage, the user is asked to provide some addi- 

ional clicks to indicate mis-segmented foreground and background 

egions, respectively. To efficiently encode these new interactions, 

e use the proposed EGD transform again to get two additional 

nteraction-derived cue maps: E f and E b are cue maps based on 

GD of user-provided foreground and background clicks for refine- 

ent, respectively. Note that, we do not reuse the initial EGD map 

btained in the first stage directly, but combine the initial interior 

argin points with refinement clicks for calculating the new EGD 

aps in the refinement step. The values of E f and E b are in the

ange of [ 0 , 1 ] and represent the similarity between each pixel and 

oreground/background clicks. Let P f and P b denote the initial fore- 

round and background probability map obtained by the CNN, and 

 represent a pixel/voxel in the input image I. The information fu- 

ion strategy is proposed to refine the P f and P b according to E f 

nd E b . Specifically, we aim to automatically emphasize E f and E b 

hen pixel i is close to the refinement clicks, otherwise P f and P b 

end to keep unchanged. We define user-calibrated foreground ( R 
f 
i 

) 
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Fig. 4. Illustration of refinement by information fusion. (a) The user provides clicks to indicate under-segmentation(red) and over-segmentation(cyan) regions. (b) and (c) 

are initial segmentation foreground and background probability maps obtained by CNN in the first stage, respectively. (d) and (e) are cue maps based on foreground and 

background refinement clicks and EGD transformation, respectively. (g) and (h) are calibrated foreground and background probability maps, respectively. (f) is refined seg- 

mentation result. (IF: Information Fusion; EGD: Exponentialized geodesic distance transformation; GC: Graph Cut). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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1 geodesic distance: https://github.com/taigw/GeodisTK . 
2 max-flow: https://vision.cs.uwaterloo.ca/code/ . 
nd background ( R b 
i 
) probability for pixel i as: 

 

f 
i 

= 

e −D f 
i 

e −D f 
i + e −D b 

i 

(3) 

 

b 
i = 

e −D b 
i 

e −D f 
i + e −D b 

i 

(4) 

 

f 
i 

= (1 − αi ) ∗ P f 
i 

+ αi ∗ E f 
i 

(5) 

 

b 
i = (1 − αi ) ∗ P b i + αi ∗ E b i (6) 

i = e − min (D f 
i 
,D b 

i 
) (7) 

here αi ∈ [0 , 1] is an automatic and adaptive weighting factor. 

hen i is close to the clicks, αi is close to 1.0, and R 
f 
i 

( R b 
i 
) is more

ffected by E 
f 
i 

( E b 
i 

). If no clicks are provided for the foreground

background), we set the corresponding D 

f 
i 

or D 

b 
i 

to a constant 

alue. Let C f and C b denote the clicks for foreground and back- 

round, respectively, so the entire set of clicks is C = C f ∪ C b . Let

 i denote the user-provided label of a pixel in the clicks, then we 

ave c i = 1 if i ∈ C f and c i = 0 if i ∈ C b . We integrate R f and R b 

nto a Conditional Random Field (CRF) to get the refined segmen- 

ation: 

 = 

∑ 

i 

φ(y i | I) + λ · ∑ 

i, j 

ψ(y i , y j | I) 
ubject to : y i = c i if i ∈ C 

(8) 

here φ and ψ are the unary and pairwise energy terms, respec- 

ively. λ specifies a relative weight between φ and ψ . In this pa- 

er: 

(y i | I) = −(y i log (r i ) + (1 − y i ) log (1 − r i )) (9) 

(y i , y j | I) ∝ exp (− (I i − I j ) 
2 

2 σ 2 
) · 1 

dist i j 

(10) 

here r i denotes the value of pixel i in R f , and y i = 1 if i be-

ongs to the foreground and 0 otherwise. I i and I j mean the in- 

ensity of pixel i and j in image image I, respectively. dist i j is the 

uclidean distance between pixel/voxel i and j. σ is a parame- 

er to control the effect of intensity difference. In this paper, the 

RF ( Lafferty et al., 2001 ) problem in Eq. (8) is submodular and can

e solved by Graph Cut through max-flow/min-cut ( Boykov and 

olly, 2001 ). 
5 
.5. Implementation details 

We implemented the U-Net and 3D U-Net for 2D and 3D im- 

ge segmentation by Pytorch ( Paszke et al., 2019 ), respectively. The 

raining was on a Ubuntu(16.04) desktop with an Intel Core i7 

PU and one GTX 1080Ti NVIDIA GPU and 120 GB memory. We 

sed the DICE loss function and Adam algorithm for optimization, 

ith a mini-batch size of 4, weight decay 10 −4 . For 2D segmen- 

ation, we totally trained 300 epochs for network convergence. 

he learning rate was kept as 10 −4 for the first 150 epochs and 

hen halved for every 30 epochs. For 3D segmentation, we to- 

ally trained 20 0 0 epochs for network convergence. The learning 

ate was kept as 10 −4 for the first 10 0 0 epochs and then halved

or every 200 epochs. Each image/volume was cropped based on 

he relaxed bounding box derived from the interior margin points 

rstly and then normalized by the mean value and standard devi- 

tion of the cropped image. To boost the generalizability to unseen 

bjects, we used several data augmentation methods during the 

raining stage, including random rotation, random scaling, random 

ipping in space and intensity. Following DeepIGeoS ( Wang et al., 

018b ), we used open source code to compute geodesic distance 1 

nd solve Eq. (8) based on max-folw 

2 , respectively. 

In this paper, all testing processes with user interactions were 

erformed on a Ubuntu(16.04) desktop with an Intel Core i7 CPU 

nd a GTX 1080Ti NVIDIA GPU. Following the practice of DeepI- 

eoS ( Wang et al., 2018b ) and BIFSeg ( Wang et al., 2018a ), the val-

es of λ in Eq. (8) was 5 and σ in Eq. (10) was 0.1 based on a grid

earch with the validation data. But for specific cases, it also allows 

he user to set these two parameters manually, like many existing 

orks ( Boykov and Jolly, 2001; Rother et al., 2004; Criminisi et al., 

008 ). We developed two PyQt GUIs for user interactions on 2D 

mages and 3D volumes respectively. (See supplementary videos) 

. Experiments and results 

.1. Comparison methods and evaluation metrics 

To investigate the performance of different encoding methods 

ith the same interior margin points in the first stage of our 

egmentation method, we compared our EGD with Euclidean dis- 

ance transform, Gaussian distance transform and geodesic dis- 

https://github.com/taigw/GeodisTK
https://vision.cs.uwaterloo.ca/code/


X. Luo, G. Wang, T. Song et al. Medical Image Analysis 72 (2021) 102102 

Fig. 5. Visual comparison of different encoding methods for placenta and spleen segmentation, in the first stage of our method. The first column shows the input image 

with user-provided interior margin points (fuchsia). The other column show the initial results. 
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3 https://zenodo.org/record/1169361#.YETa43UzYUE 
4 https://chaos.grand-challenge.org 
5 
ance transform, which are referred to as EGD, Eucl, Gauss and 

eos respectively. In addition, we compared them with segmenta- 

ion based on the bounding box without encoding of interactions, 

hich is referred to as BBox. All these methods were based on the 

ame CNN structure. For a fair comparison, Eucl, Gauss and Geos 

ere implemented with their respective optimal parameters for 

ncoding user-provided interactions. (see the supplementary doc- 

ment) 

MIDeepSeg was also compared with several existing interac- 

ive segmentation methods. In 2D cases, in addition to tradi- 

ional methods like Graph Cuts ( Boykov and Jolly, 2001 ), Random 

alks ( Grady, 2006 ) and SlicSeg ( Wang et al., 2016b ), we also

ompared recent deep learning-based methods including DeepI- 

eoS ( Wang et al., 2018b ), DIOS ( Xu et al., 2016 ), DeepGrab-

ut ( Xu et al., 2017 ) and DEXTR ( Maninis et al., 2018 ), where

he same 2D network structure was used as our 2D version of 

IDeepSeg. For 3D segmentation, we compared MIDeepSeg with 

TK-SNAP ( Yushkevich et al., 2006 ) and 3D Graph Cuts ( Boykov and

olly, 2001 ), as well as 3D versions of DeepIGeoS ( Wang et al.,

018b ), DIOS ( Xu et al., 2016 ), DeepGrabCut ( Xu et al., 2017 ) and

EXTR ( Maninis et al., 2018 ) that used the same 3D network 

s MIDeepSeg for 3D segmentation. Graph Cuts, SlicSeg, Random 

alks, DeepIGeoS and DIOS allow the user to refine the results 

ultiple times. DeepGrabCut just allows the user to draw a bound- 

ng box at the beginning and does not support further interactions 

or refinement. DEXTR takes the extreme points as the user in- 

eractions and allows the user to refine the results once. Graph 

uts, SlicSeg, Random Walks, and ITK-SNAP are traditional inter- 

ctive segmentation methods without the need of training with 

n annotated dataset and have a high generalization. In contrast, 

eepIGeoS, DIOS, DeepGrabCut, and DEXTR are deep learning- 

ased methods and require labeled data to train, and DeepIGeoS 

annot deal with unseen objects. Two users respectively used these 

nteractive frameworks to segment each test image until the result 

as visually acceptable, and we reported the average results of the 

wo users achieved. The segmentation results were compared with 

he ground truth label which was annotated by experienced ra- 

iologists manually. For quantitative evaluation, we used the Dice 

imilarity coefficient and the average symmetric surface distance 

ASSD). 

ice = 

2 · | R p ∩ R g | 
| R p | + | R g | (11) 
6 
here R p and R g denote the region segmented by an algorithm and 

he ground truth label, respectively. 

SSD = 

1 

| S p | + | S g | 
(∑ 

i ∈ S p 
d(i, S g ) + 

∑ 

i ∈ S g 
d(i, S p ) 

)
(12) 

here S p and S g represent the set of surface points of the re- 

ult provided by an algorithm and ground truth label, respectively. 

(i, S p ) is the shortest Euclidean distance between the point i and 

he surface S g . To investigate the efficiency of these methods, we 

isted the user time and amount of user interaction points of each 

egmentation task. 

.2. Interactive segmentation of 2D images 

.2.1. Data 

Firstly, we validate the proposed pipeline with two 2D appli- 

ations: segmentation of placenta and spleen from fetal MRI and 

bdomen CT, respectively. Specifically, the placenta data were col- 

ected from clinical MRI scans of 30 pregnancies in the second 

rimester, and were acquired in axial view with pixel size between 

.7422 mm × 0.7422 mm and 1.582 mm × 1.582 mm and slice 

hickness 3 - 4 mm. Each slice was resampled with a uniform pixel 

ize of 1 mm ×1 mm. We used 532 slices from 18 volumes, 111 

lices from 4 volumes and 176 slices from 8 volumes for training, 

alidation and testing, respectively. The ground truth was manually 

elineated by an experienced Radiologist. For the spleen data, we 

andomly selected 235 slices of spleen from 47 volumes (5 slices 

er volume) in BTCV ( Marsh, 2013 ) data set for training, and se- 

ected 159 slices from 53 volumes (3 slices per volume) in TCIA 

3 

ata set for testing. Secondly, to validate the generalizability of our 

ethod, we apply our model trained only with placenta in MRI 

o four types of organs from a variety of modalities that were not 

resent in the training set: 1) Kidney in CT, T1-weighted and T2- 

eighted MRI in the CHAOS 4 training set. We randomly selected 

00 slices for these three cases respectively. 2) Spleen in CT, T1- 

eighted and T2-weighted MRI in the CHAOS training set. We also 

andomly selected 100 slices for these three cases respectively. 3) 

rostate in T2-weighted MRI from MSD 

5 Task05 dataset, where we 
http://medicaldecathlon.com/ 

https://zenodo.org/record/1169361#.YETa43UzYUE
https://chaos.grand-challenge.org
http://medicaldecathlon.com/
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Fig. 6. Effect of different number of start interior margin points for segmentation of a placenta (seen object) and prostate (unseen object) with a complex shape. The first 

row shows the input image with different numbers of interior margin points. The second row shows the segmentation results. 

Table 1 

Datasets used for training and testing the 2D interactive segmentation 

framework. Note that for spleen, BTCV and TCIA are training set and test- 

ing set, respectively. 

Object Modality Training Testing DataSet 

Placenta MRI (T2) 532 slices 176 slices Ours 

Spleen CT 235 slices 159 slices BTCV, TCIA 3 

Kidney MRI (T1) No 100 slices CHAOS 

Kidney MRI (T2) No 100 slices CHAOS 

Kidney CT No 100 slices CHAOS 

Spleen MRI (T1) No 100 slices CHAOS 

Spleen MRI (T2) No 100 slices CHAOS 

Spleen CT No 100 slices CHAOS 

Prostate MRI (T2) No 72 slices MSD 

Fetal brain Ultrasound No 60 slices HC18 
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M

andomly selected 72 slices from 24 cases. 4) Fetal brain in ultra- 

ound images from HC18 6 dataset, where we randomly selected 

0 slices. Information of the training and testing set is listed in 

able 1 . To deal with different organs at different scales, we re- 

ized the cropped sub-region and the cue map to 64 × 64 as the 

nput of CNN. 

.2.2. Initial segmentation based on EGD-based cue map and 2D CNN 

Fig. 5 shows some examples of the initial segmentation of the 

lacenta from MRI and spleen from CT with user-provided interior 

argin points, respectively. We compared the proposed EGD with 

Box, Eucl (with a threshold), Gauss (with a sigma), Geos (with a 

hreshold) with the same user-provided interior margin points, re- 

pectively. Note that, the parameters of Eucl, Gauss and Geos were 

espectively optimized for comparison, and more details of these 

ptimal parameters are listed in the supplementary document. It 

an be observed that the EGD transform can guide CNN to ob- 

ain more accurate segmentation results than the other encoding 

ethods. Table 2 lists the quantitative evaluation results of differ- 

nt encoding methods for placenta and spleen. It can be observed 

hat our context-aware and parameter-free encoding method of 

GD consistently outperforms the others. The computation time 

or EGD in 2D is less than 0.05s, which gives real-time response. 

ig. 6 shows the effect of different number of interior margin 

oints for initial segmentation of challenging cases with complex 

hapes. 

.2.3. Interactive refinement by 2D information fusion between initial 

egmentation and additional clicks 

Fig. 7 shows examples of interactive refinement of placenta and 

pleen segmentation using different refinement methods. The first 

ow shows the initial segmentation obtained in stage 1 of our 
6 https://hc18.grand-challenge.org/ 

7 
ramework. Based on the initial segmentation, we further use ad- 

itional clicks to obtain refined results. We compared the refined 

esults between naive Graph Cuts (GC) and information fusion fol- 

owed by Graph Cuts (IF-GC) using the same set of user clicks. 

ollowing the implementation in BIFSeg ( Wang et al., 2018a ), the 

aive Graph Cuts takes the initial segmentation probability map 

nd the user interactions (background and foreground seeds) as 

nputs and is solved by max-flow. A python implementation is 

ublicly available in the SimpleCRF toolkit 7 . The performance on 

lacenta and spleen segmentation is listed in Table 3 , where the 

rst two rows show that our method in the first stage already 

argely outperformed automatic segmentation with the same net- 

ork structure. The last two rows demonstrate that our IF-GC 

chieved higher accuracy than naive Graph Cuts with the same set 

f user clicks for refinement in the second stage. 

We further investigated the number of refinement clicks for 

egmentation of different objects using MIDeepSeg and plotted the 

istogram of refinement click number in Fig. 8 . We can find that 

 large number of testing cases do not need additional clicks to 

chieve accurate results and just a few challenging cases need 

ore than 4 clicks for refinement. 

.2.4. Comparison with other interactive methods 

We compared MIDeepSeg with DeepIGeoS ( Wang et al., 2018b ), 

raph Cuts ( Boykov and Jolly, 2001 ), Random Walks ( Grady, 2006 ),

licSeg ( Wang et al., 2016b ), DIOS ( Xu et al., 2016 ), DeepGrab-

ut ( Xu et al., 2017 ) and DEXTR ( Maninis et al., 2018 ) for placenta

nd spleen segmentation, respectively. Fig. 9 shows a visual com- 

arison between these methods for 2D placenta segmentation. The 

rst row shows the initial interactions and the initial segmenta- 

ion results, and the second row shows the final results and all 

ser interactions after refinement. It shows that MIDeepSeg can get 

 good result with only fewer user clicks, while the others need 

ore interactions. The quantitative comparison of these methods 

ased on placenta and spleen results as presented in Table 4 . It 

hows that MIDeepSeg achieves higher accuracy than the other in- 

eractive segmentation methods and it needs less user time and 

 smaller number of interaction points than the others except for 

eepGrabCut. Note that DeepGrabCut does not allow additional 

ser interactions for refinement, which caused the lowest accu- 

acy among the compared methods. This demonstrates that our 

ethod is very efficient to obtain highly accurate segmentation re- 

ults. (Also see supplementary video 1) 

.2.5. Deal with previously unseen 2D objects 

To investigate the performance and generalizability of 

IDeepSeg on previously unseen objects, we compared MIDeepSeg 
7 https://github.com/HiLab-git/SimpleCRF 

https://hc18.grand-challenge.org/
https://github.com/HiLab-git/SimpleCRF
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Fig. 7. Visual comparison of GC and IF-GC. The first row shows the user clicks for refining initial segmentation result. The other rows show the refined results by GC and 

IF-GC, respectively. The results are based on the same set of user clicks for refinement. (GC: naive Graph Cuts, IF-GC: information fusion followed by Graph Cut) 

Table 2 

Quantitative comparison of different encoding methods for placenta and spleen segmentation 

with the same set of interior margin points. The results are based on the initial segmentation of 

our framework. ∗ denotes p-value < 0.05 when comparing with the second place method. 

Method 

“Placenta” from MRI “Spleen” from CT 

Time (s) 
Dice (%) ASS D (pixels) Dice (%) ASSD (pixels) 

Bbox 85.53 ±7.16 4.37 ±3.05 91.36 ±4.69 3.76 ±1.71 - 

Eucl 87.56 ±5.98 3.42 ±2.30 93.58 ±6.98 2.29 ±1.13 0.001 

Gauss 87.91 ±6.18 3.56 ±2.43 93.22 ±3.32 2.29 ±1.52 0.001 

Geos 87.17 ±6.38 3.62 ± 1.01 94.02 ±7.23 2.13 ±0.94 0.003 

EGD 88.10 ±4.47 ∗ 3.33 ±2.19 95.08 ±3.23 ∗ 2.25 ±1.28 0.004 

Table 3 

Quantitative comparison of different refinement methods for placenta and spleen seg- 

mentation with the same set of clicks. GC: naive Graph Cuts; IF-GC: information fusion 

followed by Graph Cuts. ∗ denotes significant difference from GC ( p-value < 0.05). 

Method 

“Placenta” from MRI “Spleen” from CT 

Dice (%) ASSD (pixels) Dice (%) ASSD (pixels) 

Auto 79.76 ±15.33 8.94 ±11.2 90.09 ±10.2 10.50 ±13.9 

Stage 1 result 88.10 ±4.47 3.33 ±2.19 95.08 ±3.23 2.25 ±1.28 

Refined by GC 88.41 ±5.33 3.14 ±2.39 95.46 ±3.19 2.06 ±1.16 

Refined by IF-GC 89.21 ±4.37 ∗ 2.87 ±1.89 ∗ 95.79 ±3.07 ∗ 1.84 ±0.86 

Table 4 

Quantitative comparison of 2D placenta and spleen segmentation by different interactive methods in terms of Dice, ASSD, user time and number 

of interaction points. ∗ denotes p-value < 0.05 when comparing with the second place method. 

Method 

“Placenta” from MRI “Spleen” from CT 

Dice (%) ASSD (pix) Times (s) Points (pix) Dice (%) ASSD (pix) Times (s) Points (pix) 

Graph Cuts 87.02 ±5.20 3.12 ±0.42 30.1 ±10.9 265.0 ±103.6 95.27 ±4.36 1.30 ±0.42 21.2 ±7.7 335.1 ±91.7 

Random Walks 87.02 ±4.58 2.95 ±2.66 33.9 ±34.6 374.3 ±114.2 95.51 ±1.59 1.45 ±2.66 20.1 ±7.9 218.4 ±69.0 

SlicSeg 87.63 ±5.71 3.00 ±0.39 25.8 ±11.5 189.3 ±81.2 95.18 ±4.70 1.23 ±0.39 20.1 ±8.2 254 ±77.5 

DeepIGeoS 87.96 ±5.16 3.89 ±2.74 12.0 ±8.0 90.6 ± 95.2 96.39 ±2.22 1.71 ±2.74 6.1 ±4.8 31.1 ±52.4 

DeepGrabCut 86.74 ±7.03 4.18 ±2.89 4.2 ±2.8 2.0 ±0 92.54 ±3.36 2.43 ±1.56 3.8 ±1.5 2.0 ±0 

DIOS 87 . 48 ±6.31 4.03 ±2.52 15.3 ±13.0 12.4 ±5.7 94.85 ±2.79 2.06 ±1.47 7.6 ±2.7 7.8 ±4.7 

DEXTR 88.77 ±4.83 3.07 ±2.25 8.9 ±3.7 7.2 ±3.3 94.18 ±3.25 2.67 ±1.36 5.9 ±3.9 5.6 ±2.7 

MIDeepSeg 89.63 ±4.15 ∗ 2.69 ±1.75 ∗ 6.40 ±3.1 5.75 ±2.1 96.93 ±1.43 ∗ 1.18 ±0.44 ∗ 4.76 ±2.0 4.85 ±1.6 

8 
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Fig. 8. Histogram of number of refinement clicks required by MIDeepSeg for different objects. Placenta (MRI) and spleen (CT) in the first row are seen objects, while spleen 

(T2-MRI) and Kidney (T2-MRI) in the second row are previously unseen objects. 

Fig. 9. Visual comparison of MIDeepSeg and other interactive methods for 2D placenta segmentation. The first row shows the initial segmentation results with or without 

initial interactions. And the second row shows the final results after refinement. 
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8 https://www.med.upenn.edu/sbia/brats2018.html . 
9 https://kits19.grand-challenge.org 
ith existing methods with good generalizability to differ- 

nt objects: Graph Cuts ( Boykov and Jolly, 2001 ), Random 

alks ( Grady, 2006 ), SlicSeg ( Wang et al., 2016b ), DIOS ( Xu et al.,

016 ), DeepGrabCut ( Xu et al., 2017 ) and DEXTR ( Maninis et al.,

018 ). For MIDeepSeg, DIOS, DeepGrabCut and DEXTR, we used the 

odel that was only trained with placenta images (T2-weighted 

RI) to segment four previously unseen organs (i.e., kidney, 

pleen, prostate and fetal brain) in a range of modalities, as listed 

n Table 1 . Fig. 10 shows examples of segmentation results of 

reviously unseen objects by MIDeepSeg. The first row shows 

he initial interactions and initial segmentation results. In the 

econd row, all interactions and final segmentation results are 

resented. It can be observed that MIDeepSeg can obtain a good 

esult on unseen organs with only few user clicks. The quantitative 

omparison of these methods based on final results as presented 

n Fig. 11 . It shows that MIDeepSeg takes noticeably less user 

ime and interactions with similar or higher accuracy compared 

ith the other interactive segmentation methods. What is more, it 

an be observed that MIDeepSeg can deal with different types of 

reviously unseen image modalities and organs very well without 

ny additional training or fine-tuning. We further studied the 

umber of refinement clicks for Kidney (T2-MRI) and spleen (T2- 

RI) segmentation using MIDeepSeg and plotted the histogram of 
9 
efinement click number in Fig. 8 . We can find that although these 

bjects are not present in the training set, our method requires no 

r only few clicks for refinement to obtain accurate results. (See 

upplementary video 2) 

.3. Interactive segmentation of 3D volumes 

.3.1. Data 

Firstly, we validated the performance of MIDeepSeg on 3D brain 

umor core segmentation from contrast-enhanced T1-weighted im- 

ges. We used the BraTS2018 8 training set which consists of 285 

ases with four modalities: FLAIR, T1ce, T1 and T2. All images had 

een skull-stripped and resampled to an isotropic resolution of 

mm × 1mm × 1mm. We used 170 and 47 T1ce cases for training 

nd testing, respectively. Manual segmentations were used as the 

round truth. 

Then, we validated the generalizability of MIDeepSeg with three 

asks of segmentation of unseen objects: 1) Whole brain tumor in 

LAIR from BraTS2018, from which we randomly selected 60 cases 

or testing. 2) Kidney in CT from KiTS2019 9 dataset, where we ran- 

https://www.med.upenn.edu/sbia/brats2018.html
https://kits19.grand-challenge.org
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Fig. 10. Some examples of 2D unseen organ segmentation results by MIDeepSeg. The first row shows the initial user interactions and the initial segmentation. The second 

row shows all user interactions and final segmentation results. Note that the model is only trained with placenta in T2 MRI. 

Fig. 11. Dice, ASSD, user time and interaction points of different interactive segmentation methods for unseen objects. � , § , ♠, ♣ denote CT images, ultrasound images, 

T1-weighted MR images and T2-weighted MR images, respectively. All these organs are previously unseen in the training set. 

Table 5 

Datasets used for training and testing for 3D experiments. 

Object Imaging Training Testing DataSet 

Tumor core MRI (T1ce) 170 volumes 47 volumes BraTS2018 

Whole tumor MRI (FLAIR) No 60 volumes BraTS2018 

Kidney CT No 30 volumes KiTS 

Left ventricular MRI (T2) No 30 volumes ACDC 
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omly selected 15 cases (include 30 kidneys with or without tu- 

or) to test. 3) Left ventricular in MRI from ACDC 

10 , where we 

andomly selected 30 cases. The testing data of KiTS and ACDC 

ere resampled to an isotropic resolution of 1mm × 1mm × 1mm. 

ll data sets for training and testing are listed in Table 5 . To deal
10 https://acdc.creatis.insa-lyon.fr/ 

t

a

f

o

10 
ith 3D objects at different scales, we resized the cropped sub- 

egion and cue map to 64 × 96 × 96. 

.3.2. Initial segmentation based on EGD-based cue map and 3D CNN 

To validate our proposed EGD transform for interior margin 

oints encoding in 3D volumes, we compared it with BBox, Eucl, 

auss, and Geos with their respectively optimized parameters, re- 

pectively. In this stage, the same set of interior margin points pro- 

ided by the user were used for these methods. Fig. 12 shows the 

nitial segmentation results obtained by CNN guided by different 

ncoding methods. It shows that EGD transform can guide CNN to 

chieve more noticeable improvement from BBox compared with 

he other encoding methods. Table 6 lists the quantitative evalua- 

ion results of different encoding methods for tumor core segmen- 

ation from T1ce images. It can be observed that our context-aware 

nd parameter-free encoding method of EGD consistently outper- 

orms the others with 87.00% in term of Dice and 1.46 mm in term 

f ASSD for tumor core, respectively. Despite that EGD takes more 

https://acdc.creatis.insa-lyon.fr/
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Fig. 12. Visual comparison of different encoding methods for 3D tumor core segmentation, which is based on the initial segmentation obtained in the first stage. All these 

methods used the same interior margin points and inferred bounding box for the input image. 

Table 6 

Quantitative comparison of different encoding methods 

for 3D tumor core segmentation with the same set of 

interior margin points. The results are based on the ini- 

tial segmentation (Stage 1) of our framework. ∗ denotes 

p-value < 0.05 when comparing with the second place 

method. 

Method Dice (%) ASSD (mm) Time (s) 

BBox 82.32 ±12.03 2.17 ±1.53 - 

Eucl 85.25 ±9.78 1.71 ±1.20 0.05 

Gauss 85.90 ±9.11 1.64 ±1.19 0.06 

Geos 86.42 ±8.91 1.60 ±1.15 0.15 

EGD 87.00 ±9.11 ∗ 1.46 ±1.14 ∗ 0.24 

Table 7 

Quantitative comparison of different refinement 

methods for 3D tumor core segmentation with the 

same set of refinement clicks. The segmentation be- 

fore refinement is obtained by MIDeepSeg in stage 

1. GC: 3D Graph Cuts; IF-GC: information fusion fol- 

lowed by Graph Cuts. ∗ denotes significantly higher 

performance than GC ( p-value < 0.05). 

Method Dice (%) ASSD (mm) 

Auto 78.08 ±13.56 2.78 ±2.22 

Stage 1 result 87.00 ±9.11 1.46 ±1.14 

Refined by GC 87.44 ±8.31 1.37 ±1.15 

Refined by IF-GC 88.21 ±7.31 ∗ 1.28 ±0.94 
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Table 8 

Quantitative evaluation of 3D tumor core segmentation by different 

interactive methods in terms of Dice, ASSD and user time, respec- 

tively. ∗ denotes p-value < 0.05 when comparing with the second 

place method. 

Method Dice (%) ASSD (mm) Time (s) 

3D Graph Cuts 78.91 ±14.98 3.46 ±5.10 99.4 ±36.7 

ITK-SNAP 82.34 ±11.42 1.99 ±1.31 173.0 ±75.5 

DeepIGeoS 82.47 ±10.78 3.34 ±3.81 82.2 ±44.7 

DeepGrabCut 82.58 ±11.79 2.89 ±2.37 10.5 ±8.3 

DIOS 83.34 ±10.47 2.57 ±1.79 67.5 ±23.6 

DEXTR 86.39 ±9.03 1.59 ±1.11 34.7 ±18.6 

MIDeepSeg 88.71 ±7.00 ∗ 1.24 ±0.88 ∗ 28.6 ±12.2 

t
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v  
ime (0.24s) for interaction encoding than the others, it is still very 

fficient in practice. 

.3.3. Interactive refinement by 3D information fusion between initial 

egmentation and additional clicks. 

Based on the above initial segmentation obtained by our 

ethod, we further use additional clicks to obtain refined results. 

e compared the refined result between naive Graph Cuts (GC) 

nd the proposed information fusion followed by Graph Cuts (IF- 

C) with the same set of user refinement clicks. The performance 

n tumor core segmentation is listed in Table 7 , showing that the 

nformation fusion achieves higher accuracy than the other vari- 

nts. Fig. 13 shows an example of tumor core segmentation by dif- 

erent refinement methods. It can be observed that IF-GC refined 
11 
he result more accurately than GC with the same set of clicks for 

efinement. 

.3.4. Comparison with other interactive methods 

Fig. 14 shows a visual comparison between MIDeepSeg, 3D 

raph Cuts ( Boykov and Jolly, 2001 ), ITK-SNAP ( Yushkevich et al., 

006 ), and 3D versions of DeepIGeoS ( Wang et al., 2018b ), 

IOS ( Xu et al., 2016 ), DeepGrabCut ( Xu et al., 2017 ) and

EXTR ( Maninis et al., 2018 ). It can be found that MIDeepSeg 

eeds only few interior margin points as the initial interactions, 

ut its initial segmentation is more accurate and it requires fewer 

ser clicks to get an accurate final result. The quantitative com- 

arison of these methods based on the final result is presented in 

able 8 . It shows that MIDeepSeg achieved significantly higher ac- 

uracy than the others. Additionally, MIDeepSeg takes 29s in av- 

rage for the entire 3D interactive segmentation process for tumor 

ore, which is less than the other methods except for DeepGrabCut. 

See supplementary video 3) 

.3.5. Deal with previously unseen 3D objects 

To investigate the generalizability of MIDeepSeg on previously 

nseen 3D objects, we used the 3D CNN model trained in the task 

f tumor core segmentation from T1ce images to deal with three 

revious unseen objects and modalities: whole tumor in FLAIR; 

idney in CT and left ventricular in MRI, as listed in Table 5 . Two

sers used MIDeepSeg and two existing methods with good gen- 

ralizability including ITK-SNAP ( Yushkevich et al., 2006 ) and 3D 

ersions of Graph Cuts ( Boykov and Jolly, 2001 ), DIOS ( Xu et al.,
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Fig. 13. Visual comparison of different refinement methods for 3D tumor core segmentation. These refinement methods are compared with the same initial segmentation 

with the same set of clicks. 

Fig. 14. Visual comparison of 3D tumor core segmentation using MIDeepSeg, DeepIGeoS, 3D Graph Cuts and ITK-SNAP. 

Fig. 15. Three examples of segmentation of 3D unseen objects using MIDeepSeg. Note that only tumor core in T1ce images were used for training. 
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016 ), DeepGrabCut ( Xu et al., 2017 ) and DEXTR ( Maninis et al.,

018 ) to segment these objects. Fig. 15 shows some examples of 

D whole tumor, kidney and left ventricular segmentation using 

IDeepSeg. It can be found that accurate results are obtained for 

ifferent types of unseen objects by using MIDeepSeg with few 

licks. Quantitative evaluation results are presented in Fig. 16 . It 

hows that MIDeepSeg achieves similar or higher accuracy com- 

ared with 3D Graph Cuts, ITK-SNAP, DeepIGeoS, DIOS, DeepGrab- 

ut and DEXTR. However, MIDeepSeg takes notably less user time 

o achieve the results. (See supplementary video 4) 
12 
. Discussion 

Though some recent works ( Wang et al., 2018b; 2020; Zhou 

t al., 2019a; Liao et al., 2020 ) on deep learning-based interactive 

egmentation have shown good performance, it is a great chal- 

enge for current CNNs to generalize well on previously unseen 

bject classes, as they rely on annotated images of the target ob- 

ect to learn directly ( Masood et al., 2015 ). For medical images, an-

otated images are very precious and scarce since accurate anno- 

ations require both expertise and time to obtain. This limits the 
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Fig. 16. Dice score, ASSD and user time of different interactive methods for 3D unseen objects segmentation. 
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erformance of CNNs to deal with unseen objects that are not 

resent in the training set. Compared with traditional CNNs ( Çiçek 

t al., 2016; Ronneberger et al., 2015 ) and transfer learning ( Wang 

t al., 2018a; Tajbakhsh et al., 2016 ), the major advantage of our 

roposed framework is that it can segment unseen objects with- 

ut re-training or fine-tuning. Therefore, it reduces the burden 

or collecting and annotating data noticeably, and can be applied 

o segment or annotate unseen objects directly. Compared with 

eepIGeoS ( Wang et al., 2018b ) and BIFSeg ( Wang et al., 2018a ),

IDeepSeg only requires few clicks as input and has higher gener- 

lizability. 

A big challenge for existing deep learning frameworks is that 

hey hardly generalize on previously unseen objects, and they re- 

uire additional re-training or fine-tuning for segmentation of new 

argets. BIFSeg ( Wang et al., 2018a ) uses image-specific fine-tuning 

o improve the generalization of CNN, but it requires fine-tuning 

or each test image, which is a time and memory consuming pro- 

ess. Based on our proposed interior margin points, EGD transform 

nd information fusion, MIDeepSeg can deal with different types of 

nseen medical images without additional fine-tuning or training. 

Despite the simple implementation, our EGD has not been 

roposed earlier for user interaction encoding, and it has two 

mportant differences from geodesic distances: First, EGD is 

arameter-free with higher generalizability. The geodesic distance 

ethod ( Wang et al., 2018b ) requires a user-defined threshold to 

ake sure that the interactions will affect a local region, which re- 

uces its generalizability as different images may require different 

hreshold values. In contrast, our EGD does not require such a pa- 

ameter, and it can be applied to different images without some 

pecific adjustment, making it a simple and effective method with 

 wider utility. Second, the EGD naturally outputs a probability 

ap, which gives can be used as the probability of a pixel belong- 

ng to the foreground or background indicated by the user interac- 

ions. This probabilistic view allows it to be seamlessly integrated 

nto a conditional random field formulation for refinement. 

The computation time of our EGD listed in Tables 2 and 6 show 

hat it takes less than 0.05s and 0.25s for 2D and 3D images re-

pectively, which is acceptable for fast response of user interac- 

ions. We also studied the computation time of other stages of 

ur method: the inference time for 2D and 3D CNNs was 0.008s 

nd 0.04s, respectively. The CRF optimization time was 0.015s and 

.5s for 2D and 3D images, respectively. The entire user time 

as around 8-12s for 2D cases ( Fig. 11 ) and 60–80s for 3D cases

 Fig. 16 ). Therefore, our method is efficient for interactive segmen- 

ation of unseen objects. 

In our experiments, we found that our refinement method 

ased on calibrated probability maps and Graph Cuts worked well 

n various cases for different organs in a range of modalities. The 

dvantages include: 1) the refinement step is decoupled from the 

nitial segmentation step based on CNNs, thus is ready-to-use as 

 general refinement tool for interactively correcting segmentation 

esults obtained by different networks and for unseen objects. 2) 

t is computational efficient, and allows real-time response of user 
13 
nteractions, which is highly desired for improving the user experi- 

nce of interactive segmentation. 3) The user interactions are used 

s hard constraints, which ensures that points given by users will 

ave their desired labels after refinement. A potential issue is that 

n complex cases a relatively large number of clicks are needed to 

btain accurate results. However, in practice, our method is easy to 

se and efficient in dealing with different unseen objects, as shown 

y the experimental results. 

A general problem for interactive segmentation is that the re- 

ult may depend on knowledge and experience of the user, as the 

ser refines the segmentation until it is visually acceptable, where 

he standard may be subjective. However, our method has some 

equirements on the user interactions: in the first stage, the in- 

eractions need to be given near the inner side boundary, and in 

he second stage the interactions are only given in incorrect re- 

ions, where for most cases, the incorrect region is small, leading 

o the range of clicks provided by different users limited. There- 

ore, inter-user variation of our method is small. As our method 

oes not require the user to provide clicks exactly on the bound- 

ry or extreme points, our interior margin points tolerate inaccu- 

ate clicks, which is more user-friendly. As shown in Fig. 10 , in the

rst column the interior margin points are not accurate and far 

way from the boundary, and in the fourth column the top point is 

lso inaccurate and even clicked in the background, but they still 

ead to good initial segmentation results. It further demonstrates 

he robustness and generalization of MIDeepSeg. 

Recently, some works ( Rupprecht et al., 2018; Song et al., 2018; 

ourati et al., 2019; Zhou et al., 2019 ) used Fisher information, nat- 

ral language, active learning and deep reinforcement learning to 

evelop an intelligent interactive segmentation or annotation tool. 

n the future, it is of interest to use active learning ( Top et al.,

011 )and deep reinforcement learning ( Liao et al., 2020 ) and un- 

ertainty estimation ( Wang et al., 2020 ) to provide guidance on 

ser interactions for refinement, which has a potential to further 

mprove the efficiency of interactive segmentation. 

. Conclusion 

In this paper, we proposed a deep learning-based interactive 

ramework with good generalizability to unseen objects for medi- 

al images segmentation and it only requires few clicks as user in- 

uts. A novel context-aware and parameter-free encoding method 

as proposed to encode user interactions to guide CNN for a good 

nitial segmentation. Based on the encoding method, we also pro- 

osed an effective refinement way for improving the accuracy of 

he segmentation results. The framework is designed to improve 

he generalizability to unseen objects, which is highly desired for 

eep learning-based models. Experiments on segmenting a wide 

ange of previously seen and unseen organs or lesions from vari- 

us 2D and 3D images show that: 1) Our interior margin points 

nd EGD transform-based framework outperforms existing deep 

earning-based interactive segmentation tools in terms of accuracy 

nd efficiency. 2) The proposed framework generalizes well on pre- 
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iously unseen objects. It could be used as an annotation tool to 

btain segmentation masks of a range of objects more efficiently 

ith high accuracy. 
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