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Background and purpose: The problem of obtaining accurate primary gross tumor volume (GTVp) seg-
mentation for nasopharyngeal carcinoma (NPC) on heterogeneous magnetic resonance imaging (MRI)
images with deep learning remains unsolved. Herein, we reported a new deep-learning method than
can accurately delineate GTVp for NPC on multi-center MRI scans.
Material and methods: We collected 1057 patients with MRI images from five hospitals and randomly
selected 600 patients from three hospitals to constitute a mixed training cohort for model development.
The resting patients were used as internal (n = 259) and external (n = 198) testing cohorts for model eval-
uation. An augmentation-invariant strategy was proposed to delineate GTVp from multi-center MRI
images, which encouraged networks to produce similar predictions for inputs with different augmenta-
tions to learn invariant anatomical structure features. The Dice similarity coefficient (DSC), 95 %
Hausdorff distance (HD95), average surface distance (ASD), and relative absolute volume difference
(RAVD) were used to measure segmentation performance.
Results: The model-generated predictions had a high overlap ratio with the ground truth. For the internal
testing cohorts, the average DSC, HD95, ASD, and RAVD were 0.88, 4.99 mm, 1.03 mm, and 0.13, respec-
tively. For external testing cohorts, the average DSC, HD95, ASD, and RAVD were 0.88, 3.97 mm, 0.97 mm,
and 0.10, respectively. No significant differences were found in DSC, HD95, and ASD for patients with dif-
ferent T categories, MRI thickness, or in-plane spacings. Moreover, the proposed augmentation-invariant
strategy outperformed the widely-used nnUNet, which uses conventional data augmentation approaches.
Conclusion: Our proposed method showed a highly accurate GTVp segmentation for NPC on multi-center
MRI images, suggesting that it has the potential to act as a generalized delineation solution for heteroge-
neous MRI images.

� 2023 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 180 (2023) 1–8
Intensity-modulated radiation therapy (IMRT) has become a
preferred radiation technique in the treatment of nasopharyngeal
carcinoma (NPC). It has improved the 5-year locoregional control
rate and reduced radiation-related toxicities of patients with NPC
[1–3]. Due to the distinctly dosimetric characteristics of IMRT,
which contains sharp drops in dosages between tumor margins
and normal tissues [4,5], delineation inaccuracies may compromise
the survival of patients and lead to severe side effects. Hence, accu-
rate delineation for primary gross tumor volume (GTVp) is impor-
tant in the era of IMRT. Currently, the majority of GTVp delineation
is performed manually. However, manual delineation for NPC is
tiring, error-prone, and also subject to great inter-observer vari-
ability [6].

Benefitting from the advantages of feature learning, deep learn-
ing (DL)-based automatic delineation has provided a promising
solution to solve the problems of manual delineation [7,8].
Recently, many sophisticated automatic segmentation models
have been proposed to segment GTVp for NPC. Encouraging
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Accurate delineation of GTVp in NPC on heterogeneous MRI by deep learning
segmentation results have been obtained using these models
[6,9,10]. Due to the good contrast for soft tissues, magnetic reso-
nance imaging (MRI) is the most common imaging modality for
the diagnosis and treatment of NPC [11]. As a result, many auto-
matic segmentation-based protocols and experiments were per-
formed using MRI [12–14].

However, most existing MRI-based DL models have been devel-
oped based on single institutional data [6,9,10]. Specifically, these
models were trained and tested using uniform MRI images. These
images had strict inclusion and exclusion criteria, such as uniform
thickness and scanning protocols [6,15]. It is unclear whether the
method of segmentation used on these datasets would produce
the same results using more heterogeneous data. As indicated in
the study of Zhang et al, direct deployment of a trained MRI-
based model from a single center to the unseen data from multi-
centers led to an average Dice similarity coefficient (DSC) decrease
of more than 10 % [16]. Therefore, it is necessary to construct a
model with powerful generalizability so it can adapt to more
heterogeneous data. This is exactly what the clinical practice
needs.

The purpose of this study is to construct a generalizable DL
model for the robust delineation of GTVp for NPC on multi-
center heterogeneous MRI. To achieve this goal, we first proposed
an augmentation-invariant training strategy to encourage DL mod-
els to pay more attention to invariant anatomical structure fea-
tures rather than intensity distribution to boost the
generalizability of DL models. Afterwards, we applied this method
to train the DL model on a mixed cohort from three hospitals. Then
we evaluated the trained model on three seen and two unseen MRI
cohorts. Finally, we investigated the clinical applicability of the
proposed framework.
Material and methods

Data

Patients from five tertiary hospitals were retrospectively col-
lected. The inclusion criteria were as follows: (i) Patients who were
histologically confirmed as NPC; (ii) Patients who underwent MRI
examinations for nasopharynx and neck before anticancer treat-
ment; (iii) The MRI sets included the contrast-enhanced T1-
weighted sequence. The patients were excluded if their images
had a low resolution that affected GTVp delineation. Finally, a total
of 1057 patients were enrolled. We had 367 cases from Sothern
Medical University (SMU), 284 cases from West China Hospital
(WCH), 208 cases from Sichuan Provincial People’s Hospital
(SPH), 146 cases from Anhui Provincial Hospital (APH), and 52
cases from Sichuan Cancer Hospital (SCH). Similar to previous
works [15,17], we used the contrast-enhanced T1-weighted
sequence images as network input for network training and
testing.

Afterward, 256, 198, and 146 patients were randomly selected
from SMU, WCH, and SPH, respectively. This was done with a
training-to-testing ratio of 7:3, and these patients constituted a
mixed training cohort (n = 600). The resting 111, 86, and 62
patients from SMU, WCH, and SPH, respectively, made up the three
internal testing cohorts (Table 1). Additionally, all patients
(n = 146) from APH and all patients (n = 52) from SCH were used
as the two external testing cohorts (Table 1). The flow chart is illus-
trated in Fig. 1.

Table 1 summarizes the main clinical characteristics of the
mixed training, the internal, and the external testing cohorts. The
characteristics included: sex, age, T category, and primary tumor
size. MRI acquisition parameters of these cohorts are presented
in Table 1. These parameters included: MRI scanners, the magnetic
field, the echo time, the repetition time, the field of views, the flip
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angle, slice thickness, and in-plane spacing. Additionally, baseline
characteristics and MRI acquisition parameters of the separated
training cohorts are shown in Supplementary Table 1.

This study was approved by the Ethics Committee on Biomedi-
cal Research of these hospitals, and the informed consent was
waived (Number 1085). All patients were restaged according to
the eighth edition of the American Joint Committee on Cancer [18].
Ground truth GTVp delineation

The protocol for GTVp contouring was consistent with many
previous studies [6,15]. Two oncologists from WCH with over ten
years of experience in the treatment of NPC were invited to delin-
eate GTVp for all patients coming from the five hospitals. Another
oncologist with over 20 years of experience was consulted in case
of disagreement. The criteria used to determine GTVp delineation
were taken from the International Commission on Radiation Units
and Measurements (ICRU) report 83 [19].

Augmentation-invariant framework for GTVp segmentation.
In this work, an augmentation-invariant framework was intro-

duced to train DL models to generate accurate predictions of GTVp
from heterogeneous MRI images (Fig. 2). Specifically, for the same
images, two different intensity transformation strategies were
employed for data augmentation, and two augmented images were
obtained. Then the two augmented images were sent to a DL model
to produce two predictions. Afterward, a loss function was used to
encourage the two predictions to be similar, which could impose
the DL model to focus more on invariant features (anatomical
structures) rather than appearance differences (intensity distribu-
tions). The proposed framework was implemented by extending
the widely-used and powerful nnUNet [20]. Detailed image pro-
cessing, network training, and testing were described in the Sup-
plementary material and methods.
Experimental setting

To investigate the effectiveness of our proposed framework, we
performed comparison experiments and result analysis based on
the 1057 patients. Firstly, we compared the proposed framework
with three extensions of nnUNet to demonstrate the effectiveness
of the proposed framework. The three extensions were nnUNet
without any data augmentation methods (nnUNet wo-DA), nnU-
Net with default data augmentation methods (nnUNet w-DDA),
and nnUNet with all the proposed framework used data augmenta-
tion methods (nnUNet w-ADA). After that, we analyzed the perfor-
mance of the proposed framework on the internal and external
cohorts to investigate its generalization for the heterogeneous
MRI images. Then, we investigated the impact of the different
tumor stages and imaging resolutions to further evaluate the
strength of the proposed framework.

Qualitative analysis was also an important part of our research.
Similar to a previous work [21], two senior radiation oncologists
with 15 years of experience (not involved in ground truth GTVp
delineation) were invited to subjectively evaluate each automatic
contouring result together. We used 4-grade criteria to estimate
the potential curative effect. These criteria included: (i) no revision
(the prediction can be directly used without any revision), (ii)
minor revision (the prediction needs a few refinements to be clin-
ically acceptable), (iii) major revision (the prediction needs to be
substantially revised), and (iv) re-delineation (the prediction is
unacceptable and needs to be delineated manually).
Evaluation metrics

Following several previous studies [22–24], we employed four
widely-used metrics to measure the DL-model-generated segmen-



Table 1
Baseline characteristics and MRI parameters in the training and testing cohorts.

Variable Mixed training cohort (n = 600) Internal testing cohorts (n = 259) External testing cohorts (n = 198)
SMU + WCH + SPH (n = 600, %) SMU (n = 111, %) WCH (n = 86, %) SPH (n = 62, %) APH (n = 146, %) SCH (n = 52, %)

Sex
Male 411 (68.5) 84 (75.7) 60 (69.8) 47 (75.8) 107 (73.3) 37 (71.2)
Female 189 (31.5) 27 (24.3) 26 (30.2) 15 (24.2) 39 (26.7) 15 (28.8)
Age (median (range)) 48(12–80) 46 (19–77) 49 (18–79) 49 (28–69) 50 (17–79) 46 (26–74)
T category
T1 60 (10.0) 10 (9.0) 11 (12.8) 4 (6.5) 18 (12.3) 11 (21.1)
T2 135 (22.5) 26 (23.4) 22 (25.6) 11 (17.7) 27 (18.5) 8 (15.4)
T3 286 (47.7) 51 (45.9) 35 (40.7) 32 (51.6) 72 (49.3) 28 (53.8)
T4 119 (19.8) 24 (21.7) 18 (20.9) 15 (24.2) 29 (19.9) 5 (9.7)
Tumor size* (cm3) 31.9 (2.4–249.1) 36.1 (8.9–163.7) 24.2 (1.3–147.9) 32.9 (7.8–179.5) 24.1 (9.7–187.9) 23.6 (8.5–105.6)
Vendor
GE 432 (72.0) 100 (90.1) 86 (100.0) 0 (0.0) 113 (77.4) 0 (0.0)
Siemen 162 (27.0) 7 (6.3) 0 (0.0) 62 (100.0) 27 (18.5) 52 (100.0)
Philips 6 (1.0) 4 (3.6) 0 (0.0) 0 (0.0) 6 (4.1) 0 (0.0)
Magnetic field (T)
1.5 239 (39.8) 106 (95.5) 0 (0.0) 1 (1.6) 119 (81.5) 23 (44.2)
3.0 361 (60.2) 5 (4.5) 86 (100.0) 61 (98.4) 27 (18.5) 29 (55.8)
Echo time* (ms) 9.58 (2.05–19.0) 2.66 (2.03–18.0) 9.47 (3.79–10.39) 9.9 (7.8–9.9) 14.9 (10.0–16.0) 11 (2.03–190.0)
Repetition time* (ms) 692 (9.54–2331) 455 (90–2334) 721 (9.54–931) 788 (650–2190) 610 (309–1223) 756 (4.39–860)
FOV 100 (75–115) 100 (75–127) 100 (95–100) 100 (78.0–100) 90 (87.0–109.0) 85 (80–100)
Flip Angle 90 (12–180) 80 (15–180) 111 (12–111) 120 (90–120) 90 (90–160) 150 (9–160)
Thickness (mm)
1–3 199 (33.2) 1 (0.9) 84 (97.6) 1 (1.6) 108 (74.0) 17 (32.7)
˃ 3–5 21 (3.5) 2 (1.8) 1 (1.2) 3 (4.8) 38 (26.0) 35 (67.3)
˃ 5–8 380 (63.3) 108 (97.3) 1 (1.2) 58 (93.6) 0 (0.0) 0 (0.0)

In-plane spacing (mm)
0.3–0.5 563 (93.8) 104 (93.7) 86 (100.0) 56 (90.3) 106 (72.9) 10 (19.2)
˃ 0.5–0.8 37 (6.2) 7 (6.3) 0 (0.0) 6 (9.7) 40 (27.4) 42 (80.8)

Abbreviations.
ms = millisecond.
mm = millimeter.
FOV = field of view.
*Data were denoted as median with range. The mixed training cohort included patients from SMU (n = 256), WCH (n = 198), and SPH (n = 146).

Fig. 1. The flow chart of this study. CNN = Conventional Neural Network.
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tation of GTVp. The four metrics were the DSC, the average surface
distance (ASD), the 95 %Hausdorff distance (HD95), and the relative
absolute volume difference (RAVD). DSC and RAVD are pixel-wise
metrics that measure the region overlap between the network’s
3

predictions and the ground truth. HD95 and ASD are distance-
based metrics that aim to measure the boundary distance between
the predictions and the ground truth. All these metrics were calcu-
lated by a public package (https://github.com/loli/medpy).

https://github.com/loli/medpy


Fig. 2. Overview of the augmentation-invariant framework for accurate and robust NPC delineation. Aug = data augmentation; Lseg = the loss function of segmentation;
Lcon = the proposed augmentation-invariant loss function.

Accurate delineation of GTVp in NPC on heterogeneous MRI by deep learning
Statistical analysis

Statistical analysis was performed with the SPSS software pack-
age (Version 22.0, IBM SPSS Inc). Numeric variables were denoted
as mean ± standard deviation. The Friedman test was used for mul-
tiple comparisons. This was followed by post hoc tests for pairwise
comparisons. In these comparisons, the Bonferroni method was
utilized to adjust the significance level. The correlation between
DSC, HD95, and ASD and the clinical parameters was examined
Table 2
Accuracy comparison for model-generated GTVp in the testing cohorts by different metho

Variables nnUNet without any data
augmentation

nnUNet with default
augmentation

Volume-based metrics DSC RAVD DSC RAVD

Internal testing cohorts (n = 259)
SMU (n = 111) 0.87 ± 0.06*** 0.14 ± 0.11** 0.87 ± 0.06*** 0.12
WCH (n = 86) 0.85 ± 0.08** 0.18 ± 0.44 0.86 ± 0.10** 0.14
SPH (n = 62) 0.83 ± 0.09 0.18 ± 0.17 0.85 ± 0.07 0.14
Whole (n = 259) 0.85 ± 0.08*** 0.16 ± 0.27*** 0.86 ± 0.08*** 0.13
External testing cohorts (n = 198)
APH (n = 146) 0.84 ± 0.08*** 0.14 ± 0.15*** 0.87 ± 0.05*** 0.11
SCH (n = 52) 0.83 ± 0.07* 0.16 ± 0.14 0.83 ± 0.07* 0.15
Whole (n = 198) 0.84 ± 0.08*** 0.15 ± 0.14*** 0.86 ± 0.06*** 0.12
Distance-based metrics HD95 (mm) ASD (mm) HD95 (mm) ASD
Internal testing cohorts (n = 259)
SMU (n = 111) 5.76 ± 4.67 1.21 ± 1.29*** 5.50 ± 3.59 1.07
WCH (n = 86) 4.98 ± 3.32** 1.36 ± 1.19* 4.58 ± 3.77 1.35
SPH (n = 62) 6.90 ± 4.28*** 1.25 ± 0.80*** 5.93 ± 7.31 1.24
Whole (n = 259) 5.78 ± 4.21*** 1.27 ± 1.15*** 5.30 ± 4.80** 1.20
External testing cohorts (n = 198)
APH (n = 146) 5.99 ± 5.36*** 1.81 ± 1.53*** 5.56 ± 6.03*** 1.60
SCH (n = 52) 7.80 ± 4.86** 1.98 ± 1.77*** 7.35 ± 6.26 1.84
Whole (n = 198) 6.47 ± 5.28*** 1.86 ± 1.60*** 6.03 ± 6.13*** 1.66

Data were denoted as mean ± standard deviation. The bold font shows significant impro
by post hoc tests. Adjust p-values were obtained by Bonferroni method. *, **, *** mean
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with the Pearson correlation coefficient. A two-tailed p-
value < 0.05 was considered significant.
Results

The quantitative performance of our proposed DL model cover-
ing both the internal and external cohorts is summarized in Table 2.
For the internal testing cohorts, the average DSC, RAVD, HD95, and
ds.

data nnUNet with all the used
augmentation
transformations

nnUNet with our proposed
augmentation-invariant
strategy

DSC RAVD DSC RAVD

± 0.11 0.87 ± 0.05*** 0.12 ± 0.09 0.89 ± 0.06 0.11 ± 0.11
± 0.35 0.87 ± 0.05** 0.15 ± 0.34 0.88 ± 0.10 0.16 ± 0.53
± 0.14 0.85 ± 0.08 0.17 ± 0.16 0.86 ± 0.07 0.15 ± 0.17
± 0.23 0.86 ± 0.06*** 0.14 ± 0.22 0.88 ± 0.08 0.13 ± 0.33

± 0.12* 0.87 ± 0.06*** 0.11 ± 0.13* 0.89 ± 0.05 0.08 ± 0.10
± 0.16 0.84 ± 0.08 0.15 ± 0.18 0.86 ± 0.07 0.13 ± 0.21
± 0.13* 0.86 ± 0.06*** 0.15 ± 0.14* 0.88 ± 0.06 0.10 ± 0.14
(mm) HD95 (mm) ASD (mm) HD95 (mm) ASD (mm)

± 1.13** 5.76 ± 6.30 1.03 ± 1.23* 5.62 ± 13.96 1.00 ± 2.69
± 1.59* 4.71 ± 3.30 1.42 ± 1.49* 4.18 ± 3.86 1.13 ± 1.45
± 1.45 6.45 ± 5.09* 1.23 ± 0.93** 4.99 ± 3.18 0.92 ± 0.72
± 1.38*** 5.58 ± 5.20*** 1.20 ± 1.27*** 4.99 ± 9.53 1.03 ± 1.97

± 1.40*** 5.85 ± 4.87*** 1.69 ± 1.33*** 3.75 ± 2.61 0.08 ± 0.10
± 1.58*** 6.41 ± 4.75 1.77 ± 1.18*** 4.58 ± 2.84 0.91 ± 0.92
± 1.45*** 6.00 ± 4.83*** 1.71 ± 1.29*** 3.97 ± 2.69 0.97 ± 0.85

vement when compared our method with others by multiple comparisons followed
adjusted p < 0.05, <0.01, <0.001, respectively.



X. Luo, W. Liao, Y. He et al. Radiotherapy and Oncology 180 (2023) 109480
ASD were 0.88, 0.13, 4.99 mm, and 1.03 mm, respectively. For
external testing cohorts, the average DSC, RAVD, HD95, and ASD
were 0.88, 0.10, 3.97 mm, and 0.97 mm, respectively. No signifi-
cant difference was found between the internal testing and exter-
nal testing cohorts when it came to these metrics (all p-values ˃
0.05) (Fig.S1).

Moreover, we analyzed the false positive and the false negative
Dice (FPD and FND) to quantify the potential for miss- or over-
treatment [25]. The average FPD and FND for internal testing
cohorts were 0.14 and 0.11, respectively (Supplementary Table 2).
The average FPD and FND for the external testing cohorts were 0.12
and 0.11, respectively. There was no significant difference between
the internal and external testing cohorts with regard to FPD
(p = 0.223) and FND (p = 0.340) (Fig.S1). A visualization of the
model-generated contours is illustrated in Fig. 3. This was done
according to the best, the mean, the median, and the worst DSC
measures of the external testing cohorts.

The proposed augmentation-invariant framework was com-
pared with three extensions of the nnUNet with different data aug-
mentation strategies for both the internal and the external testing
cohorts (Table 2). For the internal testing cohorts, the average DSC
for nnUNet wo-DA, nnUNet w-DDA, nnUNet w-ADA, and ours was
0.85, 0.86, 0.86, and 0.88, and the average RAVD for each measured
out to 0.16, 0.13, 0.14, and 0.13, respectively (Table 2). By multiple
comparisons, our proposed framework achieved a significant
improvement of DSC for the SMU, the WCH, and the whole internal
testing cohorts (all p - values < 0.05). Our framework also achieved
a significant reduction of RAVD for the SMU and the whole internal
testing cohorts (all p - values < 0.05). For all external testing
cohorts, the average DSC for nnUNet wo-DA, nnUNet w-DDA, nnU-
Fig. 3. Visual examples of the model-generated contours in external testing cohor
mean/median/worst scores of patients in term of DSC. Yellow lines denoted the experts
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Net w-AAT, and ours was 0.84, 0.86, 0.86, and 0.88, and the average
RAVD for each of these was 0.15, 0.12, 0.15, and 0.10, respectively
(Table 2). The average DSC produced by our method was signifi-
cantly higher than that produced by other methods (all p - val-
ues < 0.05). And the averages of RAVD were significantly lower
(all p - values < 0.05) in the APH and the whole external testing
cohorts.

Among the whole internal testing cohorts, the average HD95 for
nnUNet wo-DA, nnUNet w-DDA, nnUNet w-ADA, and ours was
5.78 mm, 5.30 mm, 5.58 mm, and 4.99 mm, respectively (Table 2).
For the whole external testing cohorts, the averages were 6.47 mm,
6.03 mm, 6.00 mm, and 3.97 mm, respectively. Our framework
obtained a significant reduction of HD95 for all external testing
cohorts (all p - values < 0.05) and all internal testing cohorts (all
p - values < 0.05) with the exception of the SMU. For the whole
internal testing cohorts, the average ASD for nnUNet wo-DA, nnU-
Net w-DDA, nnUNet w-ADA, and ours was 1.27 mm, 1.20 mm,
1.20 mm, and 1.03 mm, respectively. Among the whole external
testing cohorts, the averages were 1.86 mm, 1.66 mm, 1.71 mm,
and 0.97 mm, respectively. The average ASD produced by our
method was significantly lower than that produced by other meth-
ods. This was true not only for both internal and external testing
cohorts but the whole internal and external testing cohorts as well
(all p - values < 0.05).

To further examine the accuracy and robustness of our model,
quantitative comparison was conducted of patients with different
T categories in these testing cohorts. We found that there was no
significant difference among patients with various T categories
for DSC (p = 0.057), HD95 (p = 0.097), or ASD (p = 0.125) (Fig. 4a
to 4c). The average DSC and HD95 for T1, T2, T3, and T4 were
ts. We ranked all patients in external testing cohorts and selected the best/
’ delineated contours, and green lines denoted the model-predicted contours.



Fig. 4. Accuracy of the model in subgroup patients. (a-c), Accuracy of the model in patients with different T categories. (d-f), The relationship between the accuracy of the
model and the primary tumor sizes. (g-i), Accuracy of the model in patients with different thickness. (j-l) Accuracy of the model in patients with different in-plane spacing.

Accurate delineation of GTVp in NPC on heterogeneous MRI by deep learning
0.88, 0.90, 0.87, and 0.88, respectively, and 3.30 mm, 3.33 mm,
5.00 mm, and 5.47 mm, respectively. The average ASD for T1, T2,
T3, and T4 was 0.74 mm, 0.75 mm, 1.12 mm, and 1.14 mm, respec-
tively. When considering primary tumor volumes, we found that
the DSC increased with increasing primary tumor sizes, showing
a significant positive correlation (R = 0.113, p = 0.012) (Fig. 4d).
However, no significant correlation was observed between primary
tumor sizes and the HD95 (p = 0.149) or the ASD (p = 0.880) (Fig. 4e
and 4f). Four visual examples of model-generated contours (made
6

according to T categories) are illustrated in Fig.S2. Several model-
generated contours for patients with difficulty in GTVp delineation
are presented in Fig.S3.

Since several key MRI parameters had the potential to influence
our results, we studied each of them carefully to determine
whether or not they had affected the model’s performance. The
slice thickness of the T1-weighted sequence was calculated for
each patient and separated into three subgroups as shown in
Table 1. We found that there was no statistical difference in MRI
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images with different slice thicknesses for DSC (p = 0.839), HD95
(p = 0.115), and ASD (p = 0.558) (Fig. 4g to 4i). The average DSC
for 1–3 mm thickness, > 3–5 mm thickness, and ˃ 5–8 mm thick-
ness was 0.88, 0.88, and 0.88. The average HD95 for these same
thicknesses was 4.00 mm, 4.01 mm, and 5.50 mm, respectively.
The average ASD for these thicknesses was 1.06 mm, 0.84 mm,
and 1.00 mm, respectively.

In a similar manner, the in-plane spacing of the T1-weighted
sequence was calculated for each patient and divided into two sub-
groups, as indicated in Table 1. The average DSC, HD95, and ASD
were compared for these two subgroups, and no significant differ-
ences were found (all p - values > 0.5) (Fig. 4j to 4 l). The average
DSC for the 0.3–0.5 mm in-plane spacing and the > 0.5–0.8 mm in-
plane spacing was 0.88 and 0.88, respectively. The average HD95
for these same in-plane spacings was 4.67 mm and 4.12 mm,
respectively. The mean ASD for these in-plane spacings was
1.02 mm and 0.93 mm, respectively.

Two experts together subjectively evaluated the 457 GTVp pre-
dictions from the internal and external testing cohorts (Supple-
mentary Table 3). For the internal and external cohorts
respectively, approximately 24 % and 15 % of the proposed
framework-generated predictions can be seen as clinically accept-
able (no revision). For the internal cohort, 51.74 % of predictions
were evaluated as ‘‘minor revision”, and 20.85 % were evaluated
as ‘‘major revision”. 3.47 % of predictions were seen as re-
delineation. For the external cohort, 50.51 % of predictions were
evaluated as ‘‘minor revision”, and 32.32 % were evaluated as ‘‘ma-
jor revision”. 2.02 % of predictions were seen as re-delineation.

Finally, a comparison was performed between our segmenta-
tion results and previously published results produced by DL mod-
els regarding the delineation of GTVp for NPC. Although there are
some differences in datasets and experimental settings, the results
demonstrated that our framework is reasonable and comparable.
The mean DSC for all patients in the testing cohorts produced by
our model was higher than that produced by any other DL model
used in these studies, with the exception of Li et al., 2018 (Supple-
mentary Table 4).
Discussion

In this multi-institutional study, we developed a new DL model
based on an intensity augmentation-invariant framework to seg-
ment GTVp for NPC. This framework was comprehensively evalu-
ated by using three seen internal testing cohorts and two unseen
external testing cohorts. The results showed that our model per-
formed well for the internal testing cohorts and generalized well
for the external testing cohorts. Afterward, we extensively exam-
ined the segmentation performance of the model for various sub-
groups of patients, demonstrating that the model could acquire
uniform and high-accuracy GTVp delineation for patients with dif-
ferent T categories and image resolutions. Moreover, we found that
the vast majority of our model-predicted contours were clinically
acceptable after some refinements.

Previous works have shown the great potential for the clinical
applicability of DL models that delineate GTVp for NPC and other
solid tumors [6,26,27]. For instance, a DL-based on semi-
supervised learning was proposed by us to segment GTVp and
metastatic lymph nodes (GTVnd). This had an average DSC of
0.81 and 0.76 for the GTVp and GTVnd, respectively [17]. Similarly,
in the study of Li et al [6], the proposed DL tool achieved compara-
ble accuracy for GTVp delineation with expert-generated ground
truth contours. It also considerably reduced inter-user variations
on MRI images. However, there are very few studies that focus
on the problems of generalizability when it comes to GTVp seg-
mentation on multi-center heterogeneous MRI images.
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Compared with the other three methods (nnUNet and its exten-
sions), our method achieved significant improvement in all metrics
among the majority of internal and external cohorts. It is suggested
that our framework is a better method to segment GTVp from
multi-center heterogeneous MRI images. We also observed that
in the other methods the performance gaps between internal
cohorts and external cohorts were not very significant in terms
of DSC and RAVD. But the proposed framework alleviated the per-
formance gap between internal and external testing data in terms
of HD95 and ASD (Table 2). The potential reason may be that this
study trained these DL models on mixed multi-center datasets
rather than single-center datasets. This may have boosted the data
diversity and alleviated the domain gap. In addition, DSC may not
be as efficient at showing the domain gap. After all, it just consid-
ered the region-level overlap and ignored anatomical structure
similarity and clinical practice. Although there appear to be no
giant generalization gaps between the proposed framework and
the nnUNet or its extensions, the proposed framework still
improved the segmentation results for both internal and external
cohorts significantly. This shows it could help reduce the GTVp
delineation burden.

In this study, we first demonstrate that our model has a similar
performance for both internal and external testing cohorts. There
were no significant differences in any metric, which shows the
powerful generalizability of our model. Then, subgroup analysis
in all testing cohorts was conducted. At first, we found that T cat-
egories had little influence on the accuracy of the model. There was
comparable DSC, HD95, and ASD for these patients. Since patients
with more advanced T categories often had increased tumor vol-
umes, a correlation between primary tumor sizes and DSC, HD95,
and ASD was analyzed. It was indicated that HD95 and ASD were
not impacted by primary tumor sizes. And even though the DSC
was positively associated with primary tumor sizes, the R-value
was quite small. From a statistical point of view, it could not be
considered clinically significant. Taken together, these results indi-
cated that the model performed well regardless of T categories or
tumor volumes.

Similar to a previous study [6], two crucial parameters for
image quality were selected to investigate the impact of image
characteristics on the model’s accuracy. Our results showed that
no significant differences were found in DSC, HD95, and ASD for
patients with different MRI thickness or in-plane spacings, sug-
gesting that our model is robust to those differences. It may benefit
from the way we trained the segmentation network, where we
simulated the image with different thicknesses and in-plane spac-
ing via spatial transformation.

In clinical evaluation, our results showed that although the DL
model can achieve good performance in some evaluation metrics
(DSC, HD95. . .), it is still hard to apply it directly with the clinical
flow in mind. The ratio of no revision was only 23.94 % and
15.15 % for the internal and external cohorts, respectively. How-
ever, more than 50 % of predictions only need a minor revision.
So, the model could still play an essential role in DL-assisted GTVp
delineation to reduce oncologists’ delineation burden and save
time. These observations demonstrated that the proposed frame-
work might be the potential solution for accurate and generaliz-
able delineation of GTVp for NPC from multiple hospitals’ MRI
images.

This study had several limitations. First, although standard pro-
tocols for GTVp delineation were established, the ground truth
contours were generated manually and could suffer from subjec-
tive variations or errors. However, similar to most previous studies,
this is both the most commonly used and most reliable method
currently [6,9,22]. Second, this work mainly focused on the domain
generalization problem, which requires the collection and annota-
tion of large-scale images from many hospitals for network train-
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ing. Collecting and annotating a large-scale dataset is very expen-
sive, time-consuming, and limited by privacy protection. It is more
desirable to develop a method that just requires a small dataset
from one hospital for training and can still apply to test for multi-
ple hospitals directly. In the future, we will extend this work to be
more generalizable and employ small-scale images from a single
hospital dataset for network training. Third, although we accu-
rately delineated GTVp for NPC on multi-center MRI images, the
current terminal treatment planning method is still based on sim-
ulation CT. Hence, similar to other studies [6,15], we are unsure
whether the model will perform in a similar manner using CT-
based data. Much work is still needed.

Conclusion

In summary, the augmentation-invariant framework could
boost the generalization and robustness of the DL model. Using
the proposed framework and a mixed training set for network
training produced more accurate segmentation results of GTVp
for both the internal and the external testing cohorts. These results
show that the proposed framework is a potential solution for accu-
rate and generalizable GTVp delineation of NPC from multiple hos-
pitals’ MRI images.
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