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Abstract. Gross Target Volume (GTV) segmentation plays an irre-
placeable role in radiotherapy planning for Nasopharyngeal Carci-
noma (NPC). Despite that Convolutional Neural Networks (CNN) have
achieved good performance for this task, they rely on a large set of labeled
images for training, which is expensive and time-consuming to acquire.
In this paper, we propose a novel framework with Uncertainty Rectified
Pyramid Consistency (URPC) regularization for semi-supervised NPC
GTV segmentation. Concretely, we extend a backbone segmentation net-
work to produce pyramid predictions at different scales. The pyramid
predictions network (PPNet) is supervised by the ground truth of labeled
images and a multi-scale consistency loss for unlabeled images, moti-
vated by the fact that prediction at different scales for the same input
should be similar and consistent. However, due to the different resolu-
tion of these predictions, encouraging them to be consistent at each pixel
directly has low robustness and may lose some fine details. To address
this problem, we further design a novel uncertainty rectifying module to
enable the framework to gradually learn from meaningful and reliable
consensual regions at different scales. Experimental results on a dataset
with 258 NPC MR images showed that with only 10% or 20% images
labeled, our method largely improved the segmentation performance by
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leveraging the unlabeled images, and it also outperformed five state-
of-the-art semi-supervised segmentation methods. Moreover, when only
50% labeled images, URPC achieved an average Dice score of 82.74%
that was close to fully supervised learning. Code is available at: https://
github.com/HiLab-git/SSL4MIS.

Keywords: Semi-supervised learning · Uncertainty rectifying ·
Pyramid consistency · Gross target volume · Nasopharyngeal carcinoma

1 Introduction

Nasopharyngeal Carcinoma (NPC) is one of the most common cancers in south-
ern China, Southeast Asia, the Middle East, and North Africa [5]. The main-
stream treatment strategy for NPC is radiotherapy, thus accurate target delin-
eation plays an irreplaceable role for precise and effective radiotherapy. However,
manual nasopharyngeal tumor contouring is tedious and laborious, since both
the nasopharynx gross tumor volume (GTVnx) and lymph node gross tumor
volume (GTVnd) need to be accurately delineated [13]. Recently, with a large
amount of labeled data, deep learning has shown the potential for accurate
GTV segmentation [13]. However, collecting a large labeled dataset for network
training is difficult, as both time and expertise are needed to produce accurate
annotation. In contrast, collecting a large set of unlabeled data is easier, which
inspired us to develop a semi-supervised approach for NPC GTV segmentation
by leveraging unlabeled data. What’s more, semi-supervised learning (SSL) can
largely reduce the workload of annotators for the development of deep learning
models.

Recently, SSL has been widely used for medical image computing to reduce
the annotation efforts [9,12,16,19]. Bai et al. [1] developed an iterative frame-
work where in each iteration, pseudo labels for unannotated images are predicted
by the network and refined by a Conditional Random Field (CRF), then the new
pseudo labels are used to update the network. After that, the perturbation-
based methods have achieved increasing attention in semi-supervised learn-
ing [2,4,12,19]. These methods add small perturbations to unlabeled samples
and enforce the consistency between the model’s predictions on the original data
and the perturbed data. Meanwhile, the mean teacher-based [21] self-ensembling
methods [7,9,26,27] were introduced for semi-supervised medical image segmen-
tation. Following [7], some recent works [9,26,27] used uncertainty map to guide
the student model to learn more stably. In [11,17,29], an adversarial training
strategy was used as regularization for SSL, which aims to minimize the adver-
sarial loss to encourage the prediction of unlabeled data is anatomical plausible.
Luo et al. [15] proposed a dual-task consistency framework for SSL by repre-
senting segmentation as a pixel-wise classification task and a level set regression
task simultaneously, the difference between which was minimized during train-
ing. Despite their higher performance than learning from available labeled images
only, existing methods are limited by high computational cost and complex train-
ing strategies in practice. For example, the co-training-based methods need to
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train several models at the same time [20], and the uncertainty estimation-based
frameworks need multiple forward passes [27]. Self-training-based approaches
need to select and refine pseudo labels and update models’ parameters in several
rounds [1], which is time-consuming.

In this work, we propose a novel efficient semi-supervised learning framework
for the segmentation of GTVnx and GTVnd by further utilizing the unlabeled
data. Inspired by deep supervision [10], Our method leverages a network that
gives a pyramid (i.e., multi-scale) prediction, and encourages the predictions at
multiple scales to be consistent for a given input, which is a simple yet efficient
idea for SSL. A standard supervised loss at multiple scales is used for learning
from labeled images. For unlabeled images, we encourage the multi-scale predic-
tions to be consistent, which serves as a regularization. Since the ground truth of
unlabeled images is unknown, the model may produce some unreliable prediction
or noise which may cause the model to collapse and lose details. To overcome
these problems, some existing works [3,27] have leveraged model uncertainty to
boost the stability of training and obtain better results. However, they typically
estimate the uncertainty of each target prediction with Monte Carlo sampling [8],
which needs massive computational costs as it requires multiple forward passes
to obtain the uncertainty in each iteration. Differently from these methods,
we estimate the uncertainty via the prediction discrepancy among multi-scale
predictions, which just needs a single forward pass. With the guidance of the
estimated uncertainty, we automatically emphasize the reliable predictions (low
uncertainty) and weaken the unreliable ones (high uncertainty) when calculating
the multi-scale consistency. Meanwhile, we introduce the uncertainty minimiza-
tion [30] to reduce the prediction variance during training. Therefore, the pro-
posed framework has high efficiency for semi-supervised segmentation by taking
advantage of the unlabeled images. Our method was extensively evaluated on
a clinical Nasopharyngeal Carcinoma dataset. Results show our method largely
improved the segmentation performance by leveraging the unlabeled images,
and it outperformed five state-of-the-art semi-supervised segmentation methods.
Moreover, when only half of the training images are labeled, URPC achieves a
very close result compared with fully supervised learning (the mean of Dice was
82.74% vs 83.51%).

2 Methods

The proposed URPC for semi-supervised segmentation is illustrated in Fig. 1. We
add a pyramid prediction structure at the decoder of a backbone network and
refer to it as PPNet. PPNet learns from the labeled data by minimizing a typical
supervised segmentation loss directly. In addition, the PPNet is regularized by a
multi-scale consistency between the pyramid predictions to deal with unlabeled
data. The PPNet naturally leads to uncertainty estimation in a single forward
pass by measuring the discrepancy between these predictions, and we propose to
use this uncertainty to rectify the pyramid consistency considering the different
spatial resolutions in the pyramid. To describe this work precisely, we first define
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Fig. 1. Overview of the proposed Uncertainty Rectified Pyramid Consistency frame-
work, which consists of a pyramid prediction network (PPNet) and an uncertainty
rectifying module. It is based on a backbone of 3D UNet [6], where Es and Ds are
the blocks in the encoder and decoder of 3D UNet respectively. ps is the prediction as
scale s. The URPC is optimized by minimizing the supervised loss on the labeled data
and the pyramid consistency loss on the unlabeled data. In addition, an uncertainty
rectifying module is designed to reduce the impact of noise in the pyramid consistency
and boost the stability of training.

some mathematical terms. Let Dl, Du and fφ(x) be the labeled set, unlabeled
set and the PPNet’s parameters, respectively. Let D = Dl ∪ Du be the whole
provided dataset. We denote an unlabeled image as xi ∈ Du and a labeled image
pair as (xi, yi) ∈ Dl, where yi is ground truth.

2.1 Multi-scale Prediction Network with Pyramid Consistency

To better exploit the prediction discrepancy of a single model at different scales,
we firstly introduce the PPNet for the segmentation task, which can produce
predictions with different scales. In this work, we employ 3D UNet [6] as a back-
bone and modify it to produce pyramid predictions by adding a prediction layer
after each upsampling block in the decoder, where the prediction layer is imple-
mented by 1 × 1 × 1 convolution followed by a softmax layer. To introduce more
perturbations in the network, a dropout layer and a feature-level noise addition
layer are inserted before each of these prediction layers. For an input image xi,
PPNet fφ(x) produces a set of multi-scale predictions

[
p′
0, p

′
1, ..., p

′
s, ..., p

′
S−1

]
,

where the p′
s is the prediction at scale s, and a smaller s corresponds to a higher

resolution in the decoder, as shown in Fig. 1. S is the number of scales in the
pyramid prediction. Then, we rescale these multi-scale predictions to the input
size, and the corresponding results are denoted as [p0, p1, ..., ps, ..., pS−1]. For
the labeled data, we use a supervised loss that is a combination of Dice and
cross-entropy loss at multiple scales:

Lsup =
1
S

S−1∑

s=0

Ldice(ps, yi) + Lce(ps, yi)
2

(1)

where yi, Ldice, Lce denote the ground truth of input xi, the Dice loss and the
cross entropy loss, respectively.
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To efficiently leverage unlabeled data, we introduce a regularization by encour-
aging the multi-scale predictions of PPNet to be consistent. Concretely, we design
a pyramid consistency loss to minimize the discrepancy (i.e., variance) among the
predictions at different scales. First, we denote the average prediction across these
scales as:

pc =
1
S

S−1∑

s=0

ps (2)

Then, the pyramid consistency loss is defined as:

Lpyc =
1
S

S−1∑

s=0

‖ps − pc‖2 (3)

where we encourage a minimized L2 distance between the prediction at each
scale and the average prediction.

2.2 Uncertainty Rectified Pyramid Consistency Loss

As the pyramid prediction at a range of scales has different spatial resolutions,
even they can be resampled to the same resolution as the input, the resam-
pled results still have different spatial frequencies, i.e., the prediction at the
lowest resolution captures the low-frequency component of the segmentation,
and the prediction at the highest resolution obtains more high-frequency com-
ponents. Directly imposing a voxel-level consistency among these predictions
can be problematic due to the different frequencies, such as loss of fine details
or model collapse. Inspired by existing works [3,24,25,27,30], we introduce an
uncertainty-aware method to address these problems. Unlike existing methods,
our uncertainty estimation is a scale-level approach and only requires a single
forward pass, which needs less computational cost and running time than exiting
methods.

Efficient Uncertainty Estimation Based on Pyramid Predictions. As
our PPNet obtains multiple predictions in a single forward pass, uncertainty
estimation can be obtained efficiently by justing measuring their discrepancy
without extra efforts. To be specific, we use the KL-divergence between the
average prediction and the prediction at scale s as the uncertainty measurement:

Ds ≈
C∑

j=0

pj
s · log

pj
s

pj
c

(4)

where pj
s is the j th channel of ps, and C is the class (i.e., channel) number.

The approximated uncertainty shows the difference between the ps and pc. Note
that for a given voxel in Ds, a larger value indicates the prediction for that
pixel at scale s is far from the other scales, i.e., with high uncertainty. As result,
we obtain a set of uncertainty maps D0,D1, ...DS−1, where Ds corresponds to
uncertainty of ps.
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Uncertainty Rectifying. Based on the estimated uncertainty maps D0,D1, ...
DS−1, we further extend the pyramid consistency Lpyc to emphasize reliable
parts and ignore unreliable parts of the predictions for stable unsupervised
training. Specifically, for unlabeled data, we use the estimated uncertainty to
automatically select reliable voxels for loss calculation. The rectified pyramid
consistency loss is formulated as:

Lunsup =
1
S

∑S−1
s=0

∑
v(pv

s − pv
c )2 · wv

s∑S−1
s=0

∑
v wv

s︸ ︷︷ ︸
uncertainty rectification

+
1
S

S−1∑

s=0

||Ds||2
︸ ︷︷ ︸

uncertainty minimization

(5)

where pv
s and Dv

s are the corresponding prediction and uncertainty values for
voxel v. The consistency loss consists of two terms: the first is an uncertainty
rectification (UR) term and the second is uncertainty minimization (UM) term.
For a more stable training, we follow the policy in [30] and we use a voxel-
and scale-wise weight wv

s to automatically rectify the MSE loss rather than the
threshold-based cut-off approaches [3,27], as the threshold is hard to determine.
The weight for a voxel v at scale s is defined as: wv

s = e−Dv
s , it corresponds

to voxel-wise exponential operation for - Ds. According to this definition, for a
given voxel at scale s, a higher uncertainty leads to a lower weight automatically.
In addition, to encourage the PPNet to produce more consistent predictions
at different scales, we use the uncertainty minimization term as a constraint
directly. With this uncertainty rectified consistency loss, the PPNet can learn
more reliable knowledge, which can then reduce the overall uncertainty of the
model and produce more consistent predictions.

2.3 The Overall Loss Function

The proposed URPC framework learns from both labeled data and unlabeled
data by minimizing the following combined objective function:

Ltotal = Lsup + λ · Lunsup (6)

where Lsup, Lunsup are defined in Eq. 1 and Eq. 5, respectively. λ is a widely-
used time-dependent Gaussian warming up function [21,27] to control the bal-
ance between the supervised loss and unsupervised consistency loss, which is
defined as λ(t) = wmax · e(−5(1− t

tmax
)2), where wmax means the final regulariza-

tion weight, t denotes the current training step and tmax is the maximal training
step.

3 Experiments and Results

3.1 Dataset and Implementations

The NPC dataset used in this work was collected from a local cancer center. A
total number of 258 T1-weighted MRI images from 258 patients of NPC before
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radiotherapy were acquired on several 3T Siemens scanners. The mean resolution
of the dataset was 1.23 mm × 1.23 mm × 1.10 mm, and the mean dimension was
176 × 286 × 245. The ground truth for GTVnx and GTVnd were obtained from
manual segmentation by two experienced radiologists using ITK-SNAP [28]. The
dataset was randomly split into 180 cases for training, 20 cases for validation,
and 58 cases for testing. For the training images, only 18 (i.e., 10%) were used as
labeled and the remaining 162 scans were used as unlabeled. For pre-processing,
we just normalize each scan to zero mean and unit variance. In the evaluation
stage, following existing work [13], we used the commonly-adopted Dice Similar-
ity Coefficient (DSC ) and the Average Surface Distance (ASD) as segmentation
quality evaluation metrics.

The framework was implemented in PyTorch [18], using a node of a clus-
ter with 8 TiTAN 1080TI GPUs. We used the SGD optimizer (weight decay =
0.0001, momentum = 0.9) with Eq. 6 for training our method. During the train-
ing processing, the poly learning rate strategy was used for learning rate decay,
where the initial learning rate 0.1 was multiplied by (1.0 − t

tmax
)γ with γ = 0.9

and tmax = 60k. The batch size was set to 4, and each batch consists of two anno-
tated images and two unannotated images. We randomly cropped 112×112×112
sub-volumes as the network input and employed data augmentation to enlarge
the dataset and avoid over-fitting, including random cropping, random flipping,
and random rotation. The final segmentation results were obtained by using a
sliding window strategy. Following [27], the wmax was set to 0.1 for all experi-
ments. (Details of the NPC dataset is presented in supplementary materials.)

Table 1. Ablation study of the proposed URPC framework on the NPC MRI dataset,
where 18 labeled and 162 unlabeled images were used for training. UR and UM denote
the uncertainty rectification term and uncertainty minimization term, respectively.

Method GTVnx GTVnd Mean

DSC (%) ASD (voxel) DSC (%) ASD (voxel) DSC (%) ASD (voxel)

Baseline (S = 1) 71.94± 11.60 2.42± 1.65 66.27± 14.62 3.60± 3.12 69.10± 10.15 3.01± 1.76

S = 2 79.88± 6.91 1.79± 1.27 72.82± 15.55 2.85± 2.54 76.35± 9.48 2.32± 1.46

S = 3 79.09± 5.82 1.76 ± 0.97 75.08± 13.22 2.25 ± 2.27 77.09± 7.85 2.05 ± 1.24

S = 4 80.13 ± 6.37 1.82± 1.30 75.83 ± 12.93 2.65± 2.77 77.98 ± 8.00 2.24± 1.53

S = 5 79.10± 6.53 1.84± 1.14 75.73± 13.71 2.29± 2.61 77.42± 8.27 2.06± 1.43

S = 4 + UR 80.99 ± 5.50 1.70± 1.12 75.22± 13.86 3.05± 3.16 78.11± 8.06 2.38± 1.65

S = 4 + UR + UM 80.76± 5.72 1.69 ± 1.06 75.95 ± 12.74 2.20 ± 2.07 78.36 ± 7.66 1.95 ± 1.18

3.2 Evaluation of Our Proposed URPC on the NPC Dataset

Ablation Study. Firstly, to investigate the impact of different numbers of
scales in the pyramid prediction of PPNet, as shown in Fig. 1, we set S of PPNet
to 2, 3, 4, and 5, respectively, and UR and UM were not used at this stage. They
were compared with the baseline of 3D UNet [6] without multi-scale predictions
and therefore it only learns from labeled data. In contrast, the PPNet learns
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Table 2. Comparison between our method and existing methods on the NPC MRI
dataset, when using 10% labeled data. ∗ denotes p-value < 0.05 when comparing the
proposed with the others.

Method GTVnx GTVnd Mean T-T (h)

DSC (%) ASD (voxel) DSC (%) ASD (voxel) DSC (%) ASD (voxel)

SL (10%) 71.94± 11.60∗ 2.42± 1.65∗ 66.27± 14.62∗ 3.60± 3.12∗ 69.10± 10.15∗ 3.01± 1.76∗ 73

SL (100%) 83.93± 4.77∗ 1.35± 0.73∗ 83.10± 9.05∗ 1.48± 1.73∗ 83.51± 5.35∗ 1.41± 0.94∗ 61

MT [21] 79.80± 6.74∗ 1.70± 1.17 69.78± 16.34∗ 2.81± 2.57∗ 74.79± 9.15∗ 2.25± 1.40∗ 76

ICT [22] 80.58± 6.23 1.58± 1.02∗ 72.62± 13.47∗ 2.72± 2.61∗ 76.59± 7.98∗ 2.15± 1.38∗ 78

EM [23] 79.85± 6.32∗ 1.66± 1.06 69.92± 15.39∗ 3.14± 2.82∗ 74.89± 8.85∗ 2.40± 1.54∗ 74

UAMT [27] 79.62± 7.16∗ 1.67± 1.05 71.98± 15.66∗ 2.55± 2.58∗ 75.78± 9.67∗ 2.11± 1.39∗ 95

DAN [29] 80.47± 5.73 1.56±0.81∗ 74.62± 12.83∗ 2.74± 2.62∗ 77.55± 7.39 2.15± 1.26∗ 104

Ours 80.76±5.72 1.69± 1.06 75.95±12.74 2.20±2.07 78.36±7.66 1.95±1.18 74

from both labeled data and unlabeled data. The quantitative results are shown
in Table 1. It can be found that when S increases from 2 to 4, the performance of
the proposed URPC improves gradually. However, we found that S = 5 achieved
a lower performance than S = 4. That is because the resolution of p4 is too small
to preserve more details. It conforms to common sense and indicates that not
more multi-scales predictions are better. Therefore, we used S = 4 for SSL in the
following experiments. Secondly, to measure the contribution of the uncertainty
rectifying module, we then turn on the UR term and UM term with S = 4
for training. From the last section of Table 1, we can see that both uncertainty
rectifying (UR) term and uncertainty minimization (UM) term boost the model
performance. What’s more, combining all sub-modules into a unified framework
results in a better gain where the mean DSC and ASD were improved by 9.26%
and 1.06 voxels than the baseline, demonstrating their effectiveness for semi-
supervised segmentation.

Comparison with Other Semi-supervised Methods. We compared our
method with only using 18 annotated images for supervised learning with
3D UNet, which is denoted as SL (10%). Similarly, SL (100%) denote super-
vised learning with all the training images annotated, which gives the perfor-
mance upper bound. In addition, we further compared our methods with five
state-of-the-art semi-supervised segmentation methods, including Mean Teacher
(MT) [21], Interpolation Consistency Training (ICT) [22], Entropy Minimization
(EM) [23], Uncertainty Aware Mean Teacher (UAMT) [27] and Deep Adversar-
ial Network (DAN) [29]. Note that, for a fair comparison, all these methods were
implemented by using 3D UNet [6] as the backbone and they are online avail-
able [14]. Table 2 shows the quantitative comparison of these methods. It can be
found that compared with SL (10%), all semi-supervised methods improve the
segmentation performance by a large margin, as they can learn from the unanno-
tated data by a regularization loss during the training, and the DAN [29] achieve
the best results among existing methods. Our framework (URPC) achieves bet-
ter performance than these semi-supervised methods when using 10% labeled



326 X. Luo et al.

data. These results show that our URPC has the capability to capture the rich
information from the unlabeled data in addition to labeled data. What’s more,
our method is more efficient than existing methods and requires less training
time (T -T ) and computational cost, as it just needs to pass an input image once
in an iteration. In Fig. 2(a), we visualize some 2D and 3D results of the super-
vised and semi-supervised methods when using 10% labeled data. Compared
with supervised learning (SL) baseline and DAN [29], our method has a higher
overlap ratio with the ground truth and reduces the false negative in both slice
level and volume level, especially in GTVnd segmentation. We further visualized
the estimated uncertainty (D0 in Eq. 4) in the last column of Fig. 2(a), showing
that the uncertain region is mainly distributed near the boundary. We further
performed a study on the data utilization efficiency of the URPC. Figure 2(b)
shows the evolution curve of mean DSC of GTVnx and GTVnd segmentation
obtained by SL, DAN [29] and URPC when using different numbers of labeled
data. It can be found that URPC consistently outperforms SL and DAN [29],
and when increasing the labeled ratio to 50%, URPC achieves the mean DSC
of 82.74% which is very close to 83.51% obtained by SL (100%). These results
demonstrate that the URPC has the capability to utilize the unlabeled data to
bring performance gains. More results on 20% labeled data presented in sup-
plementary materials showed that our method also outperforms these existing
methods.

Fig. 2. Comparison between different methods.

4 Conclusion

In this paper, we proposed a novel efficient semi-supervised learning frame-
work URPC for medical image segmentation. A pyramid prediction network
is employed to learn from the unlabeled data by encouraging to produce consis-
tent predictions at multiple scales. An uncertainty rectifying module is designed
to improve the stability of learning from unlabeled images and further boost
model performance, where the uncertainty estimation can be obtained with a
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single forward pass efficiently. We applied the proposed method to the segmen-
tation of GTVnx and GTVnd, and the results demonstrated the effectiveness
and generalization of URPC and also indicated the promising potential of our
proposed approach for further clinical use. In the future, we will evaluate this
framework on other segmentation tasks.
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