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a b s t r a c t 

Despite that Convolutional Neural Networks (CNNs) have achieved promising performance in many med- 

ical image segmentation tasks, they rely on a large set of labeled images for training, which is expen- 

sive and time-consuming to acquire. Semi-supervised learning has shown the potential to alleviate this 

challenge by learning from a large set of unlabeled images and limited labeled samples. In this work, 

we present a simple yet efficient consistency regularization approach for semi-supervised medical image 

segmentation, called Uncertainty Rectified Pyramid Consistency (URPC). Inspired by the pyramid feature 

network, we chose a pyramid-prediction network that obtains a set of segmentation predictions at differ- 

ent scales. For semi-supervised learning, URPC learns from unlabeled data by minimizing the discrepancy 

between each of the pyramid predictions and their average. We further present multi-scale uncertainty 

rectification to boost the pyramid consistency regularization, where the rectification seeks to temper the 

consistency loss at outlier pixels that may have substantially different predictions than the average, po- 

tentially due to upsampling errors or lack of enough labeled data. Experiments on two public datasets 

and an in-house clinical dataset showed that: 1) URPC can achieve large performance improvement by 

utilizing unlabeled data and 2) Compared with five existing semi-supervised methods, URPC achieved 

better or comparable results with a simpler pipeline. Furthermore, we build a semi-supervised medical 

image segmentation codebase to boost research on this topic: https://github.com/HiLab-git/SSL4MIS . 

© 2022 Published by Elsevier B.V. 

1

m

a

R

N

m

2

o

g

R

p

i

t

t

m

m

s

2

a

i

h

1

. Introduction 

Image segmentation is a fundamental and essential task in 

edical image analysis, especially in image-guided intervention 

nd radiation therapy ( Masood et al., 2015; Wang et al., 2018 ). 

ecently, with the development of deep learning, Convolutional 

eural Networks (CNNs) have achieved state-of-the-art results in 

any automatic image segmentation tasks ( Ronneberger et al., 

015; Long et al., 2015 ). However, fully supervised learning meth- 

ds require large and carefully annotated data to train models for 

ood performance. As we know that obtaining a large dataset with 
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ixel-wise annotation is expensive and time-consuming, especially 

n medical images where the annotation requires medical exper- 

ise and clinical experience. How to learn from limited annotations 

o achieve promising results is becoming a very hot topic in the 

edical computing community. 

Recently, there are many works that attempt to train powerful 

odels with few annotated images. These works can be roughly 

ummarized as (1) Weakly-supervised learning ( Valvano et al., 

021 ), using sparse annotations (bounding boxes, scribbles, im- 

ge tags) to train models, where the sparse annotations are eas- 

er to collect compared with dense annotations; (2) Human-in-the- 

oop ( Wang et al., 2018; Luo et al., 2021c ), integrating user interac- 

ions with deep learning algorithms to achieve good performance 

ith few pixel-level annotations and user interactions; (3) Semi- 

Self-supervised learning ( Luo et al., 2021a; Chaitanya et al., 2020 ), 

https://doi.org/10.1016/j.media.2022.102517
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102517&domain=pdf
https://github.com/HiLab-git/SSL4MIS
mailto:guotai.wang@uestc.edu.cn
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hat utilizes limited annotated images and extensive unlabeled im- 

ges to train deep networks with high performance with low an- 

otation budget. In this work, we focus on semi-supervised learn- 

ng as it is closer to real clinical scenarios and can largely reduce 

he workload of annotators for the development of deep learning 

odels. 

Semi-supervised learning aims to achieve promising results by 

ombining a few labeled data and many unlabeled data, so the 

ey step is to design efficient supervision for unlabeled data. As 

 result, many methods have been presented to effectively lever- 

ge unannotated images. These methods can be mainly categorized 

nto two types: (1) Pseudo-label-based iterative learning strat- 

gy ( Lee et al., 2013 ), this approach firstly trains a model on the la-

eled data and generates pseudo labels for the unlabeled data then 

efines these pseudo labels, finally uses these refined pseudo labels 

o retrain a model and repeats this strategy several times to up- 

ate these pseudo labels and the segmentation model, iteratively. 

2) Consistency-based joint training ( Tarvainen and Valpola, 2017 ), 

hich learns from labeled data and unlabeled data in a uni- 

ed framework, where supervised loss and consistency loss are 

sed for learning from labeled and unlabeled data, respectively. 

ith the success of these strategies in general machine learn- 

ng, many works have extended them for semi-supervised med- 

cal image computing, including classification and segmentation. 

ai et al ( Bai et al., 2017 ) presented pseudo-label-based iterative 

earning for semi-supervised cardiac structure segmentation from 

RI, where all pseudo labels are refined by CRF for further model 

pdating. Mean-teacher model ( Tarvainen and Valpola, 2017 ) and 

ts extensions ( Cui et al., 2019; Yu et al., 2019; Wang et al.,

020b; Hang et al., 2020 ) also achieved increasing attention in 

emi-supervised medical image segmentation, where these meth- 

ds learn by minimizing the discrepancy between the output of a 

eacher model and that of a student model. Other methods used 

ome recent techniques also achieved surprising results, such as 

eep adversarial network ( Zheng et al., 2019 ), cross task consis- 

ency ( Luo et al., 2021a ) and attention mechanism ( Nie et al.,

018 ). 

Differently from the above works, we explore utilizing the un- 

abeled data in a simpler yet more efficient way. We propose un- 

ertainty rectified pyramid consistency for semi-supervised med- 

cal image segmentation tasks. First, inspired by pyramid net- 

ork ( Lin et al., 2017 ) and deep supervision ( Lee et al., 2015 ) for

ully supervised learning, we use a network to obtain a pyramid 

f predictions at multiple scales. Second, to leverage images with- 

ut labels, we propose pyramid consistency with the assumption 

hat the predictions of the same object at different scales should 

e close to each other. Considering that there is a lack of labeled 

ata and the up-sampling processing may lead to inaccurate pre- 

ictions, encouraging them to be consistent at each pixel directly 

ay be affected by outliers and lead to a performance drop ( Yu 

t al., 2019; Cao et al., 2020; Xia et al., 2020 ). To alleviate this

roblem, many works used uncertainty maps to filter the unre- 

iable pixels and showed promising results ( Cao et al., 2020; Yu 

t al., 2019; Zheng and Yang, 2021 ). However, previous methods es- 

imated the uncertainty of each target prediction with Monte Carlo 

ampling ( Gal and Ghahramani, 2016 ), which needs huge compu- 

ational costs as it requires multiple forward passes to obtain the 

ncertainty in each iteration. In this work, we estimate the un- 

ertainty via the prediction discrepancy among multi-scale predic- 

ions, which just needs a single forward pass. Afterwards, we use 

he pixel-wise prediction uncertainty to weigh the pyramid con- 

istency regularization, where pixels with higher uncertainty are 

ssigned with a lower weight. Based on the uncertainty estima- 

ion, we further introduce an uncertainty minimization regulariza- 

ion during the training stage to encourage the model to become 

ore confident. The results show that the pyramid consistency, un- 
2 
ertainty rectification module and uncertainty minimization con- 

traint can boost networks to learn from unlabeled data. In addi- 

ion, the uncertainty rectification module leads to large and mod- 

rate performance improvements compared with just using uncer- 

ainty minimization constraint and pyramid consistency, respec- 

ively. Therefore, the Uncertainty Rectified Pyramid Consistency 

URPC) can be used to train models for semi-supervised medical 

mage segmentation in an end-to-end manner. The main contribu- 

ions of this article are as follows: 

1) We present a simple yet efficient semi-supervised method for 

medical image segmentation by combining pyramid consistency 

and uncertainty rectifying. To the best of our knowledge, this is 

the first attempt to directly use the pyramid consistency in a 

single network for semi-supervised learning. 

2) We introduce a single forward pass-based uncertainty estima- 

tion method by measuring multi-scale discrepancy and further 

integrate it into the pyramid consistency framework to more 

reliably learn from unlabeled data. 

3) Experiments on two public datasets and one in-house dataset 

for lesion and organ segmentation demonstrate the effective- 

ness of the proposed semi-supervised methods. In addition, we 

release all implementation of this work and provide several ex- 

amples on public datasets. It may bring some potential benefits 

for semi-supervised medical image segmentation research. 

This work extends from our previous work published in 

ICCAI-2021 ( Luo et al., 2021b ). In this extension, a more com- 

rehensive literature review, related works, experiment descrip- 

ions, and discussion are provided. We further provide deeper anal- 

ses of the proposed methods, especially exploring how to utilize 

he multi-scale information for semi-supervised learning. Then, 

e evaluate our method on two public datasets, including pan- 

reas segmentation from CT and whole-brain tumor segmentation 

rom MRI and one in-house clinical dataset for nasopharyngeal car- 

inoma segmentation. Finally, we build a semi-supervised med- 

cal image segmentation benchmark and re-implemented several 

ecent methods to promote further semi-supervised learning re- 

earch in the future. 

. Related works 

.1. Medical image segmentation 

Deep learning-based methods have achieved promising re- 

ults in many image segmentation tasks ( Long et al., 2015; 

onneberger et al., 2015 ). For medical image segmentation, 

Net ( Ronneberger et al., 2015 ) and its extensions have been 

idely used as baselines for further study, especially the fa- 

ous and powerful nnUNet ( Isensee et al., 2021 ). These exten- 

ions mainly focus on data augmentation/processing, network ar- 

hitecture and loss function design. Data augmentation/processing 

s a simple yet efficient technique to improve model perfor- 

ance and robustness, and its importance has been proved 

y recent works ( Isensee et al., 2021; Xu et al., 2020 ). Net-

ork architecture is also an important component for deep 

earning-based medical image segmentation algorithms. For exam- 

le, VNet ( Milletari et al., 2016 ) extended UNet ( Çiçek et al., 2016 )

ith residual connections for 3D volumetric medical image seg- 

entation. UNet++ ( Zhou et al., 2019b ) and UNet3+ ( Huang et al.,

020 ) re-designed the skip connections to aggregate features with 

ifferent stages and scales to further improve the model per- 

ormance. After that, the attention mechanism was introduced 

o calibrate and enhance the feature in the channel and spa- 

ial dimensions for better feature representation capacity. At- 

ention UNet ( Schlemper et al., 2019 ) integrated the atten- 

ion gate into UNet to calibrate skip connected low-level fea- 
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ures. Roy et al. (2018) proposed a concurrent spatial and chan- 

el module (”squeeze-and-excitation” ( Woo et al., 2018 )) to en- 

ance segmentation networks’ performance at the same time. CA- 

et ( Gu et al., 2020 ) combined the channel, spatial and scale at-

ention with segmentation networks for explainable medical im- 

ge segmentation. More recently, transformer ( Carion et al., 2020 ) 

as used to explicitly model long-range dependency to cap- 

ure the relation of multi-organs and improve segmentation re- 

ults ( Li et al., 2021 ). Loss functions aim to minimize the dis-

repancy between the network predictions and the ground truth, 

laying an im-replaceable role in model training ( Ma et al., 2021 ). 

hese losses can be mainly summarized as: (1) Distribution- 

ased losses, maximizing the similarity between the prediction 

nd the ground label in distribution space, like cross-entropy 

oss ( Ronneberger et al., 2015 ); (2) Region-based losses, aim- 

ng to minimize the discrepancy between predictions and ground 

ruths, like Dice loss ( Milletari et al., 2016 ), and active con- 

our model-based loss ( Chen et al., 2019b; 2021 ); (3) Distance- 

ased loss, minimizing the boundary distance between predic- 

ions and ground truths in euclidean distance space, such as haus- 

orff distance loss ( Karimi and Salcudean, 2019 ) and boundary 

oss ( Kervadec et al., 2021 ). 

.2. Semi-supervised learning 

.2.1. Semi-supervised classification 

Semi-supervised classification was widely studied in the ma- 

hine learning community ( Chapelle et al., 2009 ). Entropy min- 

mization ( Grandvalet et al., 2005 ), an extremely simple yet ef- 

cient method, proved that minimizing the prediction’s entropy 

n the unlabeled data can improve the model performance and 

lso inspired many following works ( Vu et al., 2019 ). Pseudo- 

abels ( Lee et al., 2013; Wang et al., 2021 ) trained an initial model

n the labeled data and inferred with the unlabeled data to gen- 

rate the pseudo label and used the pseudo label for further train- 

ng iteratively. Consistency regularization training, the most pop- 

lar semi-supervised learning strategy in the deep learning area, 

pplied consistency on perturbed/augmented inputs to encourage 

he model to produce similar output/distributions for the per- 

urbed/augmented inputs, like temporal ensembling ( Samuli and 

imo, 2017 ), mean-teacher ( Tarvainen and Valpola, 2017 ) and their 

xtensions. Other works included imposing consistency and gener- 

ting the pseudo label through multiple data augmentation strate- 

ies also brings performance gain for semi-supervised image clas- 

ification ( Berthelot et al., 2019; Sohn et al., 2020 ). 

.2.2. Semi-supervised medical image segmentation 

Recently, many works have attempted to reduce the cost of 

ixel-level annotation required by segmentation tasks by using 

emi-supervised learning. The most popular way is to extended 

he mean-teacher framework ( Tarvainen and Valpola, 2017 ) to dif- 

erent aspects, such as pixel-wise consistency ( Cui et al., 2019 ), 

ncertainty calibration ( Yu et al., 2019; Cao et al., 2020; Wang 

t al., 2020b ) and transformation-consistent ( Li et al., 2020b ). Co- 

raining ( Qiao et al., 2018; Luo et al., 2022 ) with uncertainty cal-

bration ( Xia et al., 2020 ) and multi-planar training ( Zhou et al.,

019a ) also achieved good results in many semi-supervised medi- 

al image segmentation tasks. Deep adversarial training ( Li et al., 

020a; Zheng et al., 2019 ) utilized the unlabeled data by using 

 discriminator to align the distributions of labeled data and un- 

abeled data. Cross-task consistency encouraged different tasks to 

chieve a similar representation in the predefined space, such as 

he segmentation and the size regression ( Kervadec et al., 2019 ), 

he image reconstruction ( Chen et al., 2019a ) and the level set re-

ression ( Luo et al., 2021a ). Differently from existing methods, we 
3

tilize the pyramid consistency and uncertainty rectifying in a sin- 

le model for semi-supervised medical image segmentation, which 

s very simple yet efficient. 

. Methods 

The proposed semi-supervised learning method via Uncertainty 

ectified Pyramid Consistency (URPC) is depicted in Fig. 1 . In this 

ethod, the pyramid prediction network was used to segment im- 

ges and produce a set of predictions at different scales, i.e., pyra- 

id. For labeled data, the standard supervision loss was used to 

rain the segmentation network. In addition, the network is further 

egularized by the pyramid consistency to leverage the unlabeled 

ata. We further present an uncertainty rectification to temper the 

onsistency loss at outlier pixels which may have substantially dif- 

erent predictions than the average, potentially due to up-sampling 

rrors or lack of labeled data. Thanks to the pyramid predictions, 

he uncertainty can be estimated by measuring the discrepancy be- 

ween these predictions and requires a single forward pass. 

To describe this work easily and precisely, we first introduce 

ome default formulations of semi-supervised learning. The train- 

ng set includes two subsets: labeled data set D 

l 
N 

with N annotated 

amples and unlabeled data set D 

u 
M 

with M unannotated images, 

o the entire train set is D N+ M 

= D 

l 
N 

∪ D 

u 
M 

. Assuming that an image

 i ∈ D 

l 
N 

, its ground truth y i is provided. However, if x i ∈ D 

u 
M 

, its

round truth is not available. f φ(. ) is used to represent segmenta- 

ion model with parameter set φ. 

.1. Pyramid prediction network for semi-Supervised segmentation 

Unlike existing works ( Dou et al., 2017; Isensee et al., 2021; Lin 

t al., 2017 ) that use multi-scale prediction to accelerate the opti- 

ization process and boost the performance in a fully supervised 

etting, we propose to use the multi-scale information for semi- 

upervised segmentation in this work. We first extend the vanilla 

egmentation network to a pyramid prediction network ( f φ(. ) ) 

hat generates a set of segmentation at different scales, as shown 

n Fig. 1 . Inspired by the deep supervision network and feature 

yramid network, we add auxiliary segmentation heads at different 

esolution levels of the decoder to produce the predictions at dif- 

erent scales. To introduce more perturbations in the network, we 

dd the dropout layer before these auxiliary segmentation heads. 

or an image x , the network f φ(x ) produces a set of multi-scale

redictions 
[

p ′ 
1 
, p ′ 

2 
, p ′ s , . . . , p ′ S−1 

, p ′ 
S 

]
, where the p ′ s is the prediction 

t s -th scale. Note that a smaller s means higher resolution, and 

e use S to represent the total number of scales. Then, we re- 

cale these multi-scale predictions to the input size and they are 

enoted as [ p 1 , p 2 , p s , . . . , p S−1 , p S ] . F or the labeled data, the loss 

unction can be formulated as: 

 sup = 

S ∑ 

s =1 

αs L (p s , y ) (1) 

here L (. ) is a standard supervised learning loss function, such 

s Dice loss ( Milletari et al., 2016 ), cross entropy loss ( Çiçek et al.,

016 ) or combination loss ( Yu et al., 2019 ). αs is the weighting fac-

or for scale s . 

For the unlabeled data, we introduce a consistency regulariza- 

ion by encouraging the multi-scale predictions to be similar. In 

etail, we design a pyramid consistency loss to minimize the dis- 

repancy (i.e., variance) among the predictions at different scales. 

o simplify the calculation, we encourage predictions at different 

cales to be similar to their average prediction, which not only can 

educe the computational complexity from S(S − 1) / 2 to S, but also 

an be seen as a scale-aware pseudo label. We denote the average 
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Fig. 1. Overview of the proposed semi-supervised framework via Uncertainty Rectified Pyramid Consistency, which includes a pyramid prediction network and uncertainty 

estimation module for pyramid consistency rectifying. This framework performs semi-supervised learning by minimizing the supervised loss and the pyramid consistency loss 

on labeled and unlabeled data, respectively. Considering that there is a lack of labeled data and the up-sampling processing may lead to inaccurate predictions, encouraging 

them to be consistent at each pixel may be affected by outliers and lead to a performance drop.. 
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rediction as: 

p a v g = 

1 

S 

S ∑ 

s =1 

p s (2) 

hen, the pyramid consistency loss is formulated as : 

 pyc = 

1 

S 

S ∑ 

s =1 

‖ 

p s − p a v g ‖ 2 (3) 

here we encourage a minimized L 2 distance between the predic- 

ion at each scale and the average prediction. 

.2. Uncertainty rectified pyramid consistency 

As the pyramid prediction at a range of scales has different spa- 

ial resolutions, even they can be re-sampled to the same resolu- 

ion as the input, the re-sampled results still have different spatial 

requencies, i.e., the prediction at the lowest resolution captures 

he low-frequency component of the segmentation and the predic- 

ion at the highest resolution obtains more high-frequency com- 

onents. Directly imposing a voxel-level consistency among these 

redictions can be problematic due to the different frequencies, 

uch as loss of fine details or model collapse. Inspired by existing 

orks ( Yu et al., 2019; Cao et al., 2020; Wang et al., 2020a; 2019;

heng and Yang, 2021 ), we introduce an uncertainty-aware method 

o address these problems, where a novel uncertainty estimation 

ethod based on multi-scale discrepancy is proposed. Differently 

rom the Monte Carlo Dropout-based methods ( Yu et al., 2019; Gal 

nd Ghahramani, 2016 ), our uncertainty estimation leverages the 

ifference between predictions at different scales and it only re- 

uires a single forward pass, which needs less computational cost 

nd running time than exiting methods. 

.2.1. Uncertainty estimation based on multi-Scale discrepancy 

As the pyramid prediction network can produce multiple pre- 

ictions at different scales in a single forward pass, uncertainty 

stimation can be obtained efficiently by measuring their discrep- 

ncy without extra effort. To be specific, we use the KL -divergence 

etween the average prediction and the prediction at scale s as the 

ncertainty measurement: 

 

i 
s ≈

C−1 ∑ 

j=0 

p i, j 
s · log 

p i, j 
s 

p i, j 
c 

(4) 

here D 

i 
s is the uncertainty of pixel/voxel i at scale s . p 

i, j 
s means

he probability of pixel/voxel i belonging to class j in p s and C is 
4 
he class number for the segmentation task. The approximated un- 

ertainty shows the pixel/voxel-level difference between the p s and 

p a v g . Note that for a given pixel/voxel i in D s , a larger value D 

i 
s in-

icates the prediction for that pixel at scale s is far from the other 

cales, i.e., with high uncertainty. As result, we obtain a set of un- 

ertainty maps [ D 1 , D 2 , D s , . . . , D S−1 , D S ] , where D s corresponds to 

ncertainty of p s . 

.2.2. Uncertainty rectifying 

Based on the estimated uncertainty maps 

 

D 1 , D 2 , D s , . . . , D S−1 , D S ] , we further extend the pyramid con- 

istency L pyc to emphasize reliable parts and ignore unreliable 

arts of the predictions for stable unsupervised training. Specif- 

cally, for unlabeled data, we use the estimated uncertainty 

o automatically select reliable voxels for loss calculation. The 

ectified pyramid consistency loss is formulated as: 

 urc = 

1 

S 

S ∑ 

s =1 

∑ 

i || p i s − p i a v g || 2 · w 

i 
s ∑ 

i w 

i 
s 

(5) 

here p i s and w 

i 
s are the corresponding prediction and rectifying 

alues for pixel/voxel i at the s -th scale prediction. Follow the pol- 

cy in ( Zheng and Yang, 2021 ), we define the pixel/voxel-level rec- 

ifying values as: 

 

i 
s = e −D i s (6) 

ccording to this definition, for a given pixel/voxel at the scale s , 

 higher uncertainty automatically leads to a lower weight. Dif- 

erently from many threshold-based cut-off approaches ( Yu et al., 

019; Cao et al., 2020 ), this strategy does not require additional 

anual efforts to design or tune the threshold carefully. In addi- 

ion, inspired by previous works ( Grandvalet et al., 2005; Zheng 

nd Yang, 2021 ) that showed reducing the prediction entropy can 

oost the model’s robustness, we further introduce the uncertainty 

inimization term as a constraint directly. The uncertainty mini- 

ization constraint is defined as: 

 umc = 

1 

S 

S ∑ 

s =1 

D s (7) 

.2.3. Entire loss for unlabeled images 

Based on the rectified pyramid consistency loss and the uncer- 

ainty minimization loss, the entire loss function for unlabeled im- 

ges is defined as: 

 unsup = β ·L urc + (1 . 0 − β) ·L umc (8) 
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here β is a weight to balance the impact of the two terms. With 

 combination of these two loss functions for unlabeled images, 

he segmentation network can focus on the reliable regions, as it 

s beneficial to reduce the overall uncertainty of the model and 

roduce more consistent predictions across different scales. Here, 

e would like to point out that L pyc (3) and L umc (7) are two ways

f quantifying the discrepancy between p s and p a v g . In this work, 

e investigated the performance of using each of them or their 

ombinations and presented a complementary combination L unsup 

8) . 

.3. The overall objective function 

The proposed URPC framework learns from both labeled data 

nd unlabeled data by minimizing the following combined objec- 

ive function: 

 total = L sup + λ · L unsup (9) 

here L sup is a joint cross-entropy loss and dice loss. L unsup is 

resented in Eq. 8 . λ is a widely-used time-dependent Gaussian 

arming up function ( Tarvainen and Valpola, 2017; Yu et al., 2019 ) 

o control the balance between the supervised loss and unsuper- 

ised loss, which is defined as λ(t) = w max · e 
(−5(1 − t 

t max 
) 2 ) 

, where 

 max means the final regularization weight, t denotes the current 

raining step and t max is the maximal training step. 

. Experiments and results 

.1. Dataset 

In this study, we evaluated the URPC and compared it with 

everal previous works on one in-house dataset and two pub- 

ic datasets, including nasopharyngeal carcinoma (NPC) segmenta- 

ion dataset (NPC-MRI); whole brain tumor segmentation dataset 

BraTS2019) and pancreas segmentation (Pancreas-NIH), all of 

hem are 3D segmentation tasks. 

.1.1. NPC-MRI 

The NPC-MRI dataset ( Luo et al., 2021b ) consists of 258 pa- 

ients of NPC before radiotherapy which was collected from a lo- 

al cancer treatment center. The nasopharynx gross tumor volume 

GTVnx) and lymph node gross tumor volume (GTVnd) were an- 

otated by an experienced oncologist with 10 years of clinical ex- 

eriments and checked by an expert group. The mean resolution 

f the dataset was 1.23 mm ×1.23 mm ×1.10 mm and the mean di-

ension was 176 × 286 ×245. In this study, we randomly select 

80, 20, 58 cases for training, validation and testing respectively. 

or pre-processing, we normalize each scan to zero mean and unit 

ariance. 

.1.2. BraTS2019 

The BraTS2019 ( Menze et al., 2014 ) training set consists of 335 

cans and each scan includes four modalities (FLAIR, T1, T1ce and 

2) and each sequence with an isotropic 1 mm 

3 resolution. In this 

ork, we investigate semi-supervised segmentation of the whole 

umors from FLAIR images. These scans are randomly split into 

50, 25 and 60 scans for training, validation and testing respec- 

ively. For pre-processing, we crop the zero intensity region and 

hen re-scale the intensity of each scan to [0, 1]. 

.1.3. Pancreas-NIH 

The Pancreas-NIH ( Roth et al., 2015 ) dataset includes 82 abdom- 

nal CT images with pancreas annotation. Following many existing 

orks ( Xia et al., 2020; Luo et al., 2021a ), we chose the CT win-

ow range of [-125, 275] HU ( Zhou et al., 2019a; Luo et al., 2021a )

nd re-sample them to an isotropic 1 mm 

3 resolution, then crop the 
5

mages centering at the pancreas region with enlarged margins (25 

oxels) and finally re-scale the intensity to [0, 1]. Following exist- 

ng works ( Xia et al., 2020; Luo et al., 2021a; Shi et al., 2021 ), in

his study, 62 cases and 20 cases are used for training and testing, 

espectively. 

.2. Implementation details and evaluation metrics 

In this work, all methods are implemented by Py- 

orch ( Paszke et al., 2019 ) on a Ubuntu18.04 desktop with an 

VIDIA GTX1080TI GPU. The backbone segmentation network is 

D-UNet ( Çiçek et al., 2016 ), and we modify it to produce pyramid

redictions by adding a prediction layer after each up-sampling 

lock of the decoder as auxiliary segmentation head, where the 

ead is implemented by 1 × 1 × 1 convolution layer followed by 

oftmax. The dropout rate is set to 0.3. The SGD optimizer (weight 

ecay = 1 e −4 , momentum = 0.9) with Eq. 9 as the loss function. The

oly learning rate strategy was used to adjust the learning rate, 

here the initial learning rate l i was multiplied by (1 . 0 − t 
t max 

) 0 . 9 

here l i = 0.1 and t max = 60 k for the NPC-MRI dataset and 30 k

or the others. The batch sizes were set to 4 for all the compared 

ethods, where half of them are labeled data and the other half 

re unlabeled images. The model takes randomly cropped patches 

s input, the patches size is 112 × 112 × 112 on the NPC-MRI 

ataset, 96 × 96 × 96 on BraTS2019 and Pancreas-NIH datasets. 

andom cropping, flipping and rotation were used to enlarge the 

raining set and avoid over-fitting. Following previous works ( Yu 

t al., 2019; Luo et al., 2021b ), the w max was also set to 0.1 in this

ork. In this work, we set the weighting factor αs and balance 

eight β to 1 and 0.5, respectively. In the inference stage, the final 

egmentation results were obtained by using a sliding window 

trategy. Three widely-used metrics are used to quantitatively 

valuate the segmentation performance, including Dice coefficient 

 DSC), 95% Hausdorff Distance ( HD 95 ) and Average Surface Distance 

 ASD ). 

.3. Ablation study 

In this study, we performed comprehensive ablation studies in 

wo datasets (Pancreas-NIH and NPC-MRI) to analyze the contri- 

utions of each component and further investigate the impact of 

ulti-scale selection for semi-supervised learning. 

Firstly, we investigated the performance of URPC for NPC seg- 

entation on the validation set using 18 labeled images and 162 

nlabeled images. Our baseline was a naive 3D-UNet ( Çiçek et al., 

016 ) for fully supervised learning. To investigate the number of 

cales considered for the pyramid consistency, we compared the 

erformance of training with L pyc when S changes from 1 to 5. Due 

o the baseline ( S = 1 ) can’t utilize the unlabeled data, it just uses

8 labeled images for training. The results in the third section of 

able 1 show that increasing S from 2 to 4 leads to the perfor- 

ance improvement gradually, but when S is 5, the segmentation 

erformance becomes worse than 4. This is mainly because the 

rediction at scale 5 has a low resolution with a loss of boundary 

etails. At the same time, we also investigated the impact of L umc 

or different S. The result were presented in the second section of 

able 1 . It can be found that L umc can bring performance gain for 

ach scale s compared with the baseline. Compared with just using 

 pyc , the uncertainty rectification module ( L urc ) only leads to small 

enefits in the results (0.68% in the mean DSC term). Morever, the 

ombination of L urc and L umc achieved the best performance than 

ust using L pyc , L urc or L umc . 

Furthermore, we compared the performances when S = 4 with 

w) or without (w/o) using L pyc , where w/o L pyc denotes the net- 

ork learns from labeled data without using unlabeled data. It can 
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Table 1 

Ablation study of the proposed URPC framework on the NPC MRI validation set, where 18 labeled and 162 unlabeled images were used for training. L pyc , L urc , L umc denote 

the pyramid consistency loss, uncertainty rectified pyramid consistency loss and uncertainty minimization constraint loss, respectively.. 

Method GTVnx GTVnd Mean 

DSC (%) ASD (mm) HD 95 (mm) DSC (%) ASD (mm) HD 95 (mm) DSC (%) ASD (mm) HD 95 (mm) 

S = 1 (w/o L pyc ) 72.83 ±11.82 2.77 ±1.92 8.48 ±9.39 69.34 ±14.23 5.27 ±5.96 22.66 ±19.88 71.09 ±6.95 4.02 ±3.81 15.57 ±13.48 

S = 4 (w/o L pyc ) 73.47 ±9.53 2.88 ±2.61 7.81 ±8.97 71.22 ±12.34 5.03 ±6.22 17.25 ±16.93 72.35 ±7.85 3.96 ±2.81 12.53 ±15.48 

S = 2 (w L umc ) 77.79 ±9.89 2.87 ±5.17 6.73 ±5.45 72.33 ±12.62 6.65 ±6.87 21.67 ±18.36 75.06 ±11.37 4.76 ±3.95 14.20 ±7.95 

S = 3 (w L umc ) 78.69 ±8.78 2.41 ±1.42 5.11 ±3.31 75.05 ±10.67 4.26 ±5.25 18.52 ±14.24 76.87 ±8.45 3.36 ±4.08 11.82 ±9.58 

S = 4 (w L umc ) 80.18 ±7.66 1.75 ±1.24 5.61 ±4.04 75.33 ±10.98 4.51 ±5.28 20.41 ±18.59 77.76 ±7.57 3.13 ± 2.12 13.01 ±12.72 

S = 5 (w L umc ) 79.74 ±6.78 1.79 ±0.84 6.18 ±4.30 75.34 ±12.67 4.96 ±5.25 20.52 ±19.12 77.54 ±7.45 3.38 ±2.84 13.35 ±14.58 

S = 2 (w L pyc ) 80.14 ±6.01 1.48 ±0.82 5.96 ±3.63 74.91 ±12.29 4.03 ±4.18 23.61 ±21.82 77.53 ±8.64 2.75 ±2.31 14.79 ±12.45 

S = 3 (w L pyc ) 79.17 ±8.51 1.87 ±1.04 6.83 ±4.96 76.29 ±8.54 5.30 ±5.47 19.73 ±17.16 77.73 ±8.46 3.58 ±2.86 13.28 ±15.09 

S = 4 (w L pyc ) 80.93 ±6.13 1.45 ±0.57 5.68 ±3.86 76.79 ±7.96 3.77 ±2.51 18.46 ±17.66 78.86 ±8.17 2.61 ±1.87 12.07 ±11.73 

S = 5 (w L pyc ) 80.21 ±7.63 1.59 ±2.33 6.08 ±7.52 75.93 ±11.88 4.95 ±2.91 21.67 ±23.59 78.07 ±7.62 3.27 ±2.53 13.88 ±11.53 

S = 4 (w L pyc and L umc ) 80.63 ± 6.78 1.37 ±2.74 5.99 ±4.41 77.68 ±10.35 3.79 ±5.61 19.84 ±21.72 79.16 ±8.76 2.58 ±3.42 12.91 ±14.67 

S = 4 (w L urc ) 81.12 ±5.84 1.25 ±0.92 5.26 ±3.58 77.96 ±11.12 4.67 ±3.61 21.86 ±23.42 79.54 ±7.19 2.96 ±2.38 13.56 ± 12.91 

S = 4 (w L urc and L umc ) 81.35 ±5.29 1.36 ±0.89 4.79 ±3.12 78.48 ±9.28 4.15 ±2.87 19.35 ±17.07 79.91 ±6.01 2.76 ±1.69 12.07 ±9.73 

Table 2 

Ablation study of the proposed URPC framework on the Pancreas-NIH train- 

ing set, where 10 labeled and 40 unlabeled images were used for training. 

L pyc , L urc , L umc denote the pyramid consistency loss, uncertainty rectified 

pyramid consistency loss and uncertainty minimization constraint loss, re- 

spectively.. 

Method DSC (%) ASD (mm) HD 95 (mm) 

S = 1 (w/o L pyc ) 70.79 ±22.67 7.47 ±5.32 21.17 ±16.92 

S = 4 (w/o L pyc ) 71.57 ±17.49 6.28 ±6.34 20.69 ±18.26 

S = 2 (w L umc ) 76.87 ±9.27 3.16 ±2.23 8.36 ±4.83 

S = 3 (w L umc ) 78.29 ±8.53 2.97 ±1.86 8.02 ±4.34 

S = 4 (w L umc ) 78.96 ±6.37 3.19 ±2.79 9.56 ±8.77 

S = 5 (w L umc ) 78.43 ±7.89 3.27 ±3.01 11.27 ±9.73 

S = 2 (w L pyc ) 77.87 ±7.65 3.35 ±1.96 10.27 ±7.84 

S = 3 (w L pyc ) 78.86 ±7.09 3.21 ±3.42 9.54 ±11.72 

S = 4 (w L pyc ) 79.84 ±5.87 2.68 ±1.21 8.19 ±7.28 

S = 5 (w L pyc ) 79.59 ±5.95 2.94 ±1.82 8.07 ±7.35 

S = 4 (w L pyc and L umc ) 80.47 ±6.19 2.49 ±2.00 7.86 ±4.47 

S = 4 (w L urc ) 80.81 ±6.58 1.79 ±1.05 7.59 ±4.35 

S = 4 (w L urc and L umc ) 81.39 ±5.62 1.99 ±1.17 6.23 ±3.49 
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e found that using L pyc leads to a large performance improve- 

ent from 72.35% to 78.86% in the mean DSC term, as without 

sing L pyc , the pyramid prediction network itself can not lever- 

ge unlabeled data for learning. Therefore, we set S = 4 in the fol-

owing experiments. Then, we extended the pyramid consistency 

o uncertainty rectified pyramid consistency ( L urc ) and then added 

he uncertainty minimization term ( L umc ) to the unsupervised loss, 

ncrementally. To better identify the contribution of the uncer- 

ainty rectification module, we also investigated the performance 

hen combining L pyc and L umc for the network training. The last 

ection of Table 1 shows that uncertainty rectifying strategy and 

ncertainty minimization can further improve performance. Com- 

ared with the baseline, all these variants achieved large gains, 

hich proved that the pyramid consistency can utilize unlabeled 

ata for better results, and our proposed UPRC achieved the high- 

st performance, with an average DSC of 79.91%. 

Then, we also investigated the impact of each component and 

he best value of S on the Pancreas-NIH dataset. As previous meth- 

ds ( Xia et al., 2020; Luo et al., 2021a; Shi et al., 2021 ) do not have

 validation set, we randomly selected 12 cases from the train- 

ng set as our validation set and used the remaining 50 training 

ases (10 labeled and 40 unlabeled) for network training. We re- 

orted the ablation study results on our selected validation set in 

able 2 . It shows a similar trend to that in Table 1 . We found that

he optimal value for S is 4. In addition, the pyramid prediction 

etwork with L pyc achieved better performance than without L pyc 

hen S = 4 . Similar to L pyc , L umc module also improves the base-

ine’s performance by a large margin and achieves the best result 
6 
n terms of DSC when the scale is set to 4. The uncertainty recti- 

ying and uncertainty minimization also brings performance gain. 

verall, Table 1 and 2 demonstrated that the pyramid consistency 

ith uncertainty rectifying and uncertainty minimization can im- 

rove the baseline performance on different datasets. 

.4. Comparison with existing semi-Supervised methods 

We further compared our URPC with five recent 

emi-supervised learning methods: 1) Mean Teacher 

MT) ( Tarvainen and Valpola, 2017 ) that learns by minimizing 

he difference between the teacher and student predictions of the 

ame input under different perturbations; 2) Interpolation Consis- 

ency Training (ICT) ( Verma et al., 2019 ) that is based on mean

eacher model and mixup-based data augmentation; 3) Entropy 

inimization (EM) ( Vu et al., 2019 ) that utilizes the unlabeled data 

y reducing the predictions’ entropy; 4) Uncertainty Aware Mean 

eacher (UAMT) ( Yu et al., 2019 ) that is an extension of mean

eacher model with uncertainty estimation and 5) Deep Adversar- 

al Network (DAN) ( Zhang et al., 2017 ) that uses discriminator to 

lassify the labeled and unlabeled data for model regularization. 

or a fair comparison, all implementations of these methods used 

he same backbone network are online available. These methods 

ere also compared with simply using the annotated images 

or supervised learning, which is denoted as SL and serves as a 

aseline. The experiments were conducted when only 10% and 

0% training images were annotated, respectively. The comparison 

esults in different datasets are the following. 

.4.1. Results on NPC-MRI 

The quantitative comparisons between our URPC and the other 

ethods on the NPC dataset are presented in Table 3 . It is no-

iceable that all semi-supervised approaches perform better than 

he supervised learning method (SL) in both cases of 10% and 20% 

abeled data. DAN ( Zheng et al., 2019 ) and EM ( Vu et al., 2019 )

utperformed other existing methods in 10% and 20% labeled data 

ettings respectively, demonstrating that semi-supervised learning 

an improve segmentation performance significantly by leveraging 

nlabeled data. Notably, our URPC achieved better or comparable 

erformance than all existing methods on most evaluation metrics, 

ith significantly higher DSC than 5 out of the 6 compared meth- 

ds. Fig. 2 shows a visual comparison of results obtained by these 

ethods, where DAN ( Zheng et al., 2019 ) and EM ( Vu et al., 2019 )

chieved better results in all existing methods when 10% and 20% 

raining data were annotated, respectively. It demonstrates that our 

RPC has a higher overlap ratio with the ground truth than EM 

nd DAN and fewer mis-segmentations in both 2D slice-level and 
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Table 3 

Comparison between our method and existing methods on the NPC-MRI dataset. ∗ denotes the p-value < 0.05 based on paired t -test when comparing the proposed with 

the others. 

Labeled % Method GTVnx GTVnd Mean 

DSC (%) ASD (mm) HD 95 (mm) DSC (%) ASD (mm) HD 95 (mm) DSC (%) ASD (mm) HD 95 (mm) 

10% SL 71.94 ±11 . 60 ∗ 2.75 ±2 . 90 ∗ 9.31 ±9 . 42 ∗ 66.27 ±14 . 62 ∗ 5.52 ±10 . 13 ∗ 22.15 ±24 . 84 ∗ 69.10 ±10 . 15 ∗ 4.14 ±5 . 10 ∗ 15.73 ±13 . 27 ∗
MT ( Tarvainen and Valpola, 2017 ) 79.80 ±6 . 74 ∗ 1.70 ±1.12 6.35 ±5.69 69.78 ±16 . 33 ∗ 6.01 ±9 . 70 ∗ 22.10 ±30 . 59 ∗ 74.79 ±9 . 15 ∗ 3.85 ±4 . 83 ∗ 14.22 ±15 . 86 ∗
ICT ( Verma et al., 2019 ) 80.58 ±6.23 1.66 ±0.92 5.71 ±4.62 72.62 ±13 . 47 ∗ 5.01 ±6.44 20.43 ±23.81 76.60 ±7 . 89 ∗ 3.33 ±3.24 13.07 ±12.41 

EM ( Vu et al., 2019 ) 79.85 ±6 . 32 ∗ 1.88 ±1.55 7.52 ±10 . 55 ∗ 69.92 ±12 . 39 ∗ 4.19 ±7.41 17.77 ±20.44 74.89 ±8 . 85 ∗ 3.04 ±3.71 12.64 ±11.83 

UAMT ( Yu et al., 2019 ) 79.62 ±7 . 16 ∗ 1.74 ±1.03 6.05 ±4.60 71.98 ±15 . 66 ∗ 6.09 ±8 . 46 ∗ 22.82 ±25 . 14 ∗ 75.80 ±9 . 67 ∗ 3.91 ±4 . 25 ∗ 14.44 ±13 . 23 ∗
DAN ( Zhang et al., 2017 ) 80.47 ±5.73 2.06 ±2 . 15 ∗ 5.90 ±4.55 74.62 ±12.83 3.97 ±6.34 18.45 ±21.24 77.54 ±7.39 3.01 ±3.27 12.18 ±10.75 

Ours 80.76 ±5.72 1.42 ±0.57 5.79 ±4.42 75.95 ±12.74 5.15 ±8.01 19.88 ±25.56 78.36 ±7.66 3.29 ±4.00 12.83 ±13.47 

20% SL 80.72 ±8 . 28 ∗ 1.67 ±1.65 5.36 ±3.70 74.16 ±15 . 46 ∗ 5.17 ±9 . 25 ∗ 19.32 ±23 . 04 ∗ 77.44 ±9 . 99 ∗ 3.42 ±4 . 65 ∗ 12.34 ±11 . 81 ∗
MT ( Tarvainen and Valpola, 2017 ) 81.10 ±5 . 90 ∗ 1.64 ±1.23 5.17 ±3.06 76.30 ±13 . 25 ∗ 4.37 ±7 . 27 ∗ 17.82 ±22.44 78.70 ±8 . 03 ∗ 3.00 ±3.64 11.50 ±11.35 

ICT ( Verma et al., 2019 ) 81.86 ±5 . 91 ∗ 1.51 ±0.74 5.08 ±3.55 77.42 ±12 . 48 ∗ 4.97 ±8 . 31 ∗ 19.64 ±25 . 34 ∗ 79.64 ±7 . 43 ∗ 3.24 ±4.14 12.36 ±12 . 90 ∗
EM ( Vu et al., 2019 ) 82.05 ±5.28 1.41 ±0.60 4.95 ±3.40 77.78 ±12 . 18 ∗ 4.17 ±7.72 14.81 ±20.45 79.92 ±7 . 12 ∗ 2.79 ±3.86 9.88 ±10.34 

UAMT ( Yu et al., 2019 ) 81.38 ±6 . 38 ∗ 1.41 ±0.67 5.31 ±4.02 77.47 ±12 . 55 ∗ 4.32 ±7 . 08 ∗ 16.39 ±20.72 79.43 ±7 . 86 ∗ 2.87 ±3.55 10.85 ±11.08 

DAN ( Zhang et al., 2017 ) 81.68 ±5 . 68 ∗ 1.60 ±1.12 5.23 ±3.45 78.09 ±12 . 91 ∗ 3.61 ±6.37 15.09 ±20.52 79.88 ±7 . 41 ∗ 2.60 ±3.18 10.16 ±10.25 

Ours 82.39 ±5.67 1.58 ±1.86 5.76 ±7.80 79.79 ±10.81 3.27 ±5.61 16.37 ±21.50 81.22 ±6.43 2.42 ±2.94 11.07 ±11.43 

100% Full-Sup 83.93 ±4.77 1.26 ±0.54 4.30 ±3.01 83.10 ±9.05 2.43 ±5.22 8.61 ±12.80 83.51 ±5.35 1.85 ±2.61 6.45 ±6.50 

Fig. 2. Visualization of results by different methods and uncertainty map obtained by our method on the MRI-NPC dataset. Lime and yellow contours denote the prediction 

and ground truth, respectively. In 3D results, the red and green colors show the GTVnx and GTVnd segmentation, respectively. 

Table 4 

Comparison between our method and existing methods on the BraTS2019 dataset. ∗ denotes the p-value 

< 0.05 based on paired t -test when comparing the proposed with the others. 

Labeled % Method DSC (%) ASD (mm) HD 95 (mm) 

10% SL 79.09 ±15 . 12 ∗ 7.53 ±10 . 71 ∗ 22.43 ±26 . 99 ∗

MT ( Tarvainen and Valpola, 2017 ) 81.70 ±14 . 25 ∗ 3.56 ±4 . 78 ∗ 13.28 ±15 . 97 ∗

ICT ( Verma et al., 2019 ) 82.70 ±12 . 33 ∗ 4.07 ±5 . 78 ∗ 13.43 ±16.53 

EM ( Vu et al., 2019 ) 82.35 ±13 . 10 ∗ 3.68 ±4 . 92 ∗ 14.70 ±17 . 51 ∗

UAMT ( Yu et al., 2019 ) 80.93 ±14 . 54 ∗ 5.43 ±8 . 72 ∗ 17.71 ±22 . 43 ∗

DAN ( Zhang et al., 2017 ) 82.50 ±12 . 44 ∗ 3.79 ±4 . 58 ∗ 15.11 ±17 . 70 ∗

Ours 84.16 ±11.01 2.63 ±3.50 11.01 ±13.37 

20% SL 80.58 ±14 . 85 ∗ 7.33 ±10 . 10 ∗ 22.09 ±26 . 21 ∗

MT ( Tarvainen and Valpola, 2017 ) 85.03 ±11.70 1.89 ±2.08 7.80 ±8.59 

ICT ( Verma et al., 2019 ) 84.67 ±11.97 2.39 ±3 . 60 ∗ 8.97 ±11.53 

EM ( Vu et al., 2019 ) 84.82 ±10.55 3.21 ±3 . 96 ∗ 12.37 ±17 . 20 ∗

UAMT ( Yu et al., 2019 ) 85.05 ±11.39 3.03 ±3 . 87 ∗ 12.31 ±17 . 32 ∗

DAN ( Zhang et al., 2017 ) 84.63 ±12.79 2.34 ±2.95 8.96 ±11.24 

Ours 85.49 ±10.89 2.04 ±3.32 8.47 ±11.41 

100% Full-Sup 88.51 ±6.90 1.81 ±2.86 7.52 ±10.50 
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D volume-level. The uncertainty map ( D 1 ) also shown that the 

igh uncertain region is mainly distributed near the boundary. 

.4.2. Results on brats2019 

We further evaluated URPC on the BraTS2019 dataset. Table 4 

ists the results of all methods on the testing dataset. It can 

e found that URPC significantly outperformsed all the exist- 

ng methods when 10% training images were annotated, where 
7

CT ( Verma et al., 2019 ) achieved the best performance than the 

ther existing methods with 82.70% of DSC but URPC outperforms 

t with a gain of 1.47% in DSC. Meanwhile, the URPC outperformed 

ll the existing methods in a slight margin when 20% training im- 

ges were annotated. The visual comparison based on 10% labeled 

ata is presented in Fig. 3 . Compared with ICT ( Verma et al., 2019 )

nd baseline methods, our URPC model achieved the most accurate 

egmentation results with fewer over-/under-segmentation regions. 
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Fig. 3. Visual comparison between different methods for brain tumor segmentation with 10% training data being annotated. Lime and yellow contours denote the prediction 

and ground truth, respectively. 

Table 5 

Comparison between our method and existing methods on the Pancreas-NIH dataset. ∗ denotes the p- 

value < 0.05 based on paired t -test when comparing the proposed with the others. 

Labeled % Method DSC (%) ASD (mm) HD 95 (mm) 

10% SL 64.32 ±13 . 91 ∗ 13.89 ±6 . 12 ∗ 42.23 ±15 . 56 ∗

MT ( Tarvainen and Valpola, 2017 ) 70.62 ±14 . 16 ∗ 5.45 ±3 . 67 ∗ 17.54 ±17.74 

ICT ( Verma et al., 2019 ) 72.69 ±12 . 20 ∗ 2.25 ±1.63 9.25 ±6.67 

EM ( Vu et al., 2019 ) 70.68 ±13 . 22 ∗ 5.55 ±3 . 67 ∗ 21.17 ±18 . 90 ∗

UAMT ( Yu et al., 2019 ) 71.78 ±13 . 02 ∗ 3.06 ±2.59 11.75 ±12.82 

DAN ( Zhang et al., 2017 ) 72.79 ±13 . 07 ∗ 4.43 ±2.76 13.96 ±11.24 

Ours 74.89 ±10.21 3.74 ±2.54 11.30 ±8.07 

20% SL 72.38 ±20 . 58 ∗ 7.28 ±4 . 67 ∗ 20.20 ±17 . 40 ∗

MT ( Tarvainen and Valpola, 2017 ) 78.20 ±8 . 81 ∗ 1.67 ±0.77 7.41 ±4.74 

ICT ( Verma et al., 2019 ) 77.37 ±9 . 61 ∗ 2.13 ±1.54 8.39 ±7 . 17 ∗

EM ( Vu et al., 2019 ) 76.75 ±10 . 39 ∗ 3.59 ±2 . 68 ∗ 12.87 ±11 . 50 ∗

UAMT ( Yu et al., 2019 ) 78.63 ±8.52 2.91 ±1 . 91 ∗ 7.81 ±4 . 66 ∗

DAN ( Zhang et al., 2017 ) 79.06 ±6.58 2.75 ±2.05 9.61 ±12 . 43 ∗

Ours 80.31 ±5.77 2.10 ±1.56 6.58 ±3.95 

100% Full-Sup 83.01 ±5.42 1.43 ±0.60 4.39 ±1.67 
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.4.3. Results on pancreas-NIH 

Furthermore, we followed previous works ( Xia et al., 2020; Luo 

t al., 2021a; Shi et al., 2021 ) to train the network ( S = 4) with the

hole training set (62 cases) for fair comparison with five existing 

ethods. The results are listed in Table 5 . As shown in this table,

AN ( Zheng et al., 2019 ) achieved the best performance than all 

he existing methods in both 10% and 20% labeled ratio settings, 

ut it also is inferior to our proposed URPC. The proposed method 

utperformed all the compared methods in term of DSC, especially 

n the case of 10% labeled data our method achieved a signifi- 

ant improvement over the second method with a large gain 2.10% 

f DSC. Overall, the URPC achieved the best performance among 

ll the compared methods, which is closer to the upper bound of 
8 
earning form 100% annotated images. Fig. 4 shows a visual com- 

arison of results generated by the baseline, DAN ( Zheng et al., 

019 ) and the proposed URPC, when 10% training images were 

abeled. It demonstrates that the proposed URPC is also able to 

chieve promising segmentation results though the labeled data is 

imited, where the results obtained by URPC have higher accuracy 

nd fewer false-positive regions. 

.4.4. Computational cost 

For the general semi-supervised learning methods, the main 

ifference is about the training strategies, so they may require dif- 

erent time costs for training. In this work, we investigated these 

ethods’ computational-cost based on the same soft and hard- 
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Fig. 4. Visual comparison between different methods for pancreas segmentation with 10% training data being annotated. Lime and yellow contours denote the prediction 

and ground truth, respectively. 

Table 6 

Comparison of computational-cost between our method and exist- 

ing methods based on the MRI-NPC dataset. FTimes means the times 

of an input image passed the networks during one iteration. TTime 

means the total training time (hours). 

SL MT ICT EM UAMT DAN Ours 

FTimes 1 2 3 1 9 2 1 

TTime (h) 73 76 78 74 95 104 74 
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are. We analyzed the number of forwarding pass times of an in- 

ut image in one iteration and the total training time. It’s common 

ense that with the number of times an input image passes the 

odel increase, the training time and GPU memory also increase 

apidly. Table 6 lists the comparison results of computational-cost. 

t can be found that our framework does not need to perform 

ultiple forward passes or iterative training strategies during the 

raining stage, where most of the existing methods need to pass 

n image more than two times in an iteration, so our URPC can 

educe large computational cost and training time. In addition, all 

ethods require very similar inference costs, as all of them use 

he same backbone and all auxiliary modules are just used in the 

raining stage. 

.5. Impact of the different ratios of the labeled data 

To investigate the data utilization efficiency of the proposed 

RPC, we performed studies under different ratios of labeled 

mages on the three different datasets and compare the pro- 

osed URPC with a fully supervised baseline and a state-of-the- 

rt approach (DAN). The results on NPC-MRI, Pancreas-NIH and 

raTS2019 are presented in Fig. 5 (a), (b) and (c) respectively. It 

s noticeable that both DAN and URPC outperform SL by a huge 

argin on three datasets, especially when the labeled ratio was 

0% and 20%, indicating that semi-supervised methods can achieve 

romising results when just limited labeled data is accessible. 
9 
eanwhile, the proposed URPC consistently performed better than 

he SL and DAN ( Zheng et al., 2019 ) in different labeled ratio set-

ings, which demonstrates that our method is able to leverage the 

nlabeled data and bring performance improvement. Furthermore, 

t can be observed that when increasing the labeled ratio to 50%, 

ur URPC achieves very close results to learning from 100% anno- 

ated images. These results indicate that our URPC has the poten- 

ial to achieve accurate segmentation results with only a small set 

f training images being labeled, which is desirable for reducing 

he annotation cost in clinical practice. 

.6. Analysis of hyper-parameter β and consistency regularization 

.6.1. Sensitivity analysis of β
In this part, we first investigated the sensitivity of β in Eq. 5 . 

he β plays a vital role in the proposed method and controls 

he usage of the uncertainty rectified pyramid consistency term 

nd the uncertainty minimization constraint term. Following the 

xperimental setting of Section 4.3 , we investigated the segmen- 

ation performance of URPC when the β is set to different val- 

es on the NPC-MRI dataset with 18 labeled images and 162 

nlabeled images and also on the Pancreas-NIH dataset using 

0% labeled data and 80% unlabeled data, respectively. Fig. 6 

hows the segmentation performance when the β was set to 

 0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 , 1 . 0 } . It can observe that the perfor-

ance of URPC is not sensitive to the value of β when it is around

.5. 

.6.2. Analysis of consistency regularization and uncertainty 

easurement 

In general, there are two widely-used methods to quantify the 

iscrepancy or uncertainty between two predictions, named KL - 

ivergence or L 2 . Firstly, we analyzed the difference between using 

he L 2 and KL -divergence to measure the discrepancy of two prob- 

bilities by simulating the segmentation procedure. Let’s consider a 
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Fig. 5. Performance of three different approaches with different ratios of annotated images. (a) Results of GTVnx and GTVnd segmentation on MRI-NPC. (b) Results of 

pancreas segmentation on Pancreas-NIH. (c) Results of whole tumor segmentation on BraTS2019. 

Fig. 6. Sensitivity analysis of hyper-parameter β on the NPC-MRI and Pancreas-NIH datasets.. 

Fig. 7. Toy examples of using L 2 and KL -divergence to measure the discrepancy at a pixel. p a v g and p s represent the foreground probabilities of the average prediction and 

the prediction at scale s , respectively.. 
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inary segmentation problem at a pixel. Assume the average fore- 

round probability is p a v g and p s is the foreground probability at 

cale s . We compared the L 2 and KL -divergence-based discrepancy 

hen p s changes from 0 to 1.0. Fig. 7 shows three toy examples 

here p a v g is set to 0.1, 0.5, 0.9. These toy examples show that the 

L -divergence will impose a higher penalty to outliers than L 2 . So, 

he KL -divergence is more discriminative and suitable for the rec- 

ification function. 

Afterwards, we further investigated the performance of URPC 

hen using KL -divergence or L 2 or their combinations to calcu- 

ate the consistency regularization loss functions and uncertainty 

stimation. Following the experimental settings of Section 4.3 and 

.6.1 , we conducted the experiments on NPC-MRI and Pancreas- 

IH. The quantitative results of using different loss functions com- 

inations on the NPC-MRI and Pancreas-NIH datasets are presented 

n Table 7 . It shows that just using L 2 or KL achieves a worse per-

ormance compared with using a joint combination of L 2 and KL . 

Furthermore, we also found that using KL to measure the un- 

ertainty and employing L 2 to impose the consistency constraint 

eads to very similar results compared with utilizing L 2 for un- 

ertainty estimation and KL for consistency regularization. Fig. 8 

resents visual examples of using KL and L 2 to estimate the uncer- 

ainty map ( D 1 ). It can observe that using KL or L 2 for uncertainty

stimation leads to some differences in the boundary or ambigu- 
10 
us regions. It can observe that using KL or L 2 for uncertainty es- 

imation leads to some differences in the boundary or ambiguous 

egions. It further demonstrates the difference of KL or L 2 in the 

iscrepancy measurement, like Fig. 7 shows. We further presented 

n example visualization of pancreas segmentation at each scale 

 , and their corresponding loss function values of L pyc , L urc , L umc 

in Fig. 9 ). It can be found that the value L urc is lower than L pyc 

t each scale, as the uncertainty rectification module assigns low 

eights for uncertain pixels. These results show the effectiveness 

nd robustness of the proposed URPC for semi-supervised medical 

mage segmentation. 

. Discussion and conclusion 

Despite the deep-learning-based automatic medical image seg- 

entation having achieved great success, it is also limited by re- 

uiring a large number of fine annotations when developing clini- 

al applications or tools. Semi-supervised learning learns from lim- 

ted labeled data and large unlabeled data have shown the po- 

ential to deal with this challenge. In this work, we proposed 

n uncertainty rectified pyramid consistency (URPC) for semi- 

upervised medical image segmentation. In contrast with exist- 

ng semi-supervised methods for medical image segmentation ( Yu 

t al., 2019; Bai et al., 2017; Zheng et al., 2019 ), our URPC extends
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Table 7 

Analysis of consistency regularization loss functions and uncertainty measurement methods 

on the NPC-MRI and Pancreas-NIH datasets.. 

Dataset D s ( Eq. 4 ) L urc ( Eq. 5 ) DSC (%) ASD (mm) HD 95 (mm) 

NPC-MRI L 2 L 2 76.85 ±3.30 4.52 ±3.98 13.37 ±8.78 

KL KL 77.89 ±4.18 4.30 ±3.73 15.53 ±12.41 

L 2 KL 78.39 ±3.45 3.84 ±4.05 14.01 ±11.5 

KL L 2 78.36 ±7.66 3.29 ±4.00 12.83 ±13.47 

L 2 L 2 79.62 ±6.50 2.73 ±1.59 6.03 ±3.32 

Pancreas-NIH KL KL 79.57 ±6.38 2.83 ±1.95 7.36 ±3.75 

L 2 KL 80.20 ±5.53 2.61 ±1.82 6.72 ±3.81 

KL L 2 80.31 ±5.77 2.10 ±1.56 6.58 ±3.95 

Fig. 8. Visual comparison of estimated uncertainty maps using KL and L 2 .. 

Fig. 9. A example visualization of p s , p a v g and corresponding L pyc / L urc / L umc for each scale s .. 
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he general segmentation network to the pyramid predictions net- 

ork for semi-supervised image segmentation directly without any 

omplex modules or specific designs. One advantage of the URPC 

s that it is easy to implement and just needs very minor modifi- 

ations in the standard segmentation network. Meanwhile, it could 

e combined with many existing semi-supervised learning meth- 

ds, such as mean teacher model ( Yu et al., 2019 ), adversarial 

raining ( Zheng et al., 2019 ) and pseudo labels ( Bai et al., 2017 ). Re-

ent semi-supervised segmentation methods mainly focus on de- 

igning consistency regularization by adding the perturbation on 

he input level (e.g., data augmentation), and feature-level (e.g., 

ropout). But this work presents a multi-scale consistency regu- 

arization at the model output level. The proposed method does 

ot conflict with these previous methods, and it can be seen as 

 multi-scale aware module to extend these existing methods for 

etter performance. However, this work focuses more on evaluat- 

ng its effectiveness. 

Benefiting from multi-scale predictions, we can measure the 

ncertainty by calculating the variance of these predictions, which 

equires a single forward pass. Moreover, URPC optimizes for both 
11 
easures of consistency: the weighted L2 distance ( L urc ) as well as 

 form derived from the KL -divergence ( L umc ). Figs. 7 and 8 show

he difference between L 2 and KL -divergence. Table 7 shows 

hat combining the L 2 and KL -divergence to train networks leads 

o better performance. It shows the applicability of the com- 

ined consistency regularization like widely-used combinations of 

ross-entropy and dice loss functions. In addition, Table 1 and 

able 2 show that the uncertainty rectification module brings small 

erformance gains for pyramid consistency. Moreover, the uncer- 

ainty minimization constraint is also sufficient to utilize unlabeled 

ata, but the combination of these modules outperforms each sub- 

odule and outperforms several existing methods. 

Recently, some works, such as multi-head/decoder network and 

rouped convolution-based CNNs ( Wang et al., 2020a ) can also 

roduce multiple predictions and estimate the model uncertainty 

n a single forward pass. However, these methods are limited by 

he computational cost, as the grouped convolution-based CNN 

nd multi-head/decoder network increase the model capacity and 

equire more GPU memory. In addition, they are designed to 

eal with interactive refinement and uncertainty estimation, re- 
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pectively and lack of evaluation in semi-supervised learning. De- 

pite URPC achieving promising results in several datasets, it is 

lso limited by hard generalizing to cross-domain scenarios, as 

he general semi-supervised learning assumes all samples belong 

o a similar distribution ( Li et al., 2020b ). In the future, comb-

ng the pyramid consistency with contrastive learning and adver- 

arial training ( Vu et al., 2019 ) may help to handle this chal-

enge ( Chaitanya et al., 2020 ). 

In conclusion, this work presents a simple yet efficient uncer- 

ainty rectifying pyramid consistency model for semi-supervised 

edical image segmentation. We first introduce a pyramid consis- 

ency regularization to extend the classical fully supervised pyra- 

id prediction network to semi-supervised learning. To encour- 

ge the model to learn from reliable regions, we further intro- 

uce an uncertainty rectifying strategy to filter unreliable regions 

utomatically. Experiments on two public datasets and one in- 

ouse dataset show that the URPC achieves similar or higher ac- 

uracy with less computational cost than many recent works, and 

urther indicate the potential of our proposed method to reduce 

he labeling effort s in clinical workflow. In addition, we release a 

emi-supervised medical image segmentation codebase and bench- 

ark, which could promote future research in the medical image 

omputing community. In the future, the proposed method can 

e combined with other consistency-based methods ( Luo et al., 

021a; Kervadec et al., 2019; Chen et al., 2019a ) to deal with chal-

enging segmentation tasks. 
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