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A B S T R A C T

Whole abdominal organ segmentation is important in diagnosing abdomen lesions, radiotherapy, and follow-
up. However, oncologists’ delineating all abdominal organs from 3D volumes is time-consuming and very
expensive. Deep learning-based medical image segmentation has shown the potential to reduce manual
delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of
large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole
abdominal organ segmentation. In this work, we establish a new large-scale Whole abdominal ORgan Dataset
(WORD) for algorithm research and clinical application development. This dataset contains 150 abdominal CT
volumes (30495 slices). Each volume has 16 organs with fine pixel-level annotations and scribble-based sparse
annotations, which may be the largest dataset with whole abdominal organ annotation. Several state-of-the-
art segmentation methods are evaluated on this dataset. And we also invited three experienced oncologists to
revise the model predictions to measure the gap between the deep learning method and oncologists. Afterwards,
we investigate the inference-efficient learning on the WORD, as the high-resolution image requires large GPU
memory and a long inference time in the test stage. We further evaluate the scribble-based annotation-efficient
learning on this dataset, as the pixel-wise manual annotation is time-consuming and expensive. The work
provided a new benchmark for the abdominal multi-organ segmentation task, and these experiments can serve
as the baseline for future research and clinical application development.
1. Introduction

Abdominal organ segmentation is a fundamental and essential task
in abdominal disease diagnosis, cancer treatment, and radiotherapy
planning (Tang et al., 2019). As accurate segmentation results can
provide pieces of valuable information for the clinical diagnosis and
follow-ups, like organ size, location, boundary state, the spatial rela-
tionship of multiple organs, etc. In addition, organ segmentation plays a
critical role in clinical treatment, especially in radiation therapy-based
cancer and oncology treatments (Chen et al., 2021b). Accurate segmen-
tation of organs at risk can alleviate potential effects on healthy organs
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near cancer regions. However, in clinical practice, organ segmentation
is usually manually performed by radiation oncologists or radiologists.
It is time-consuming and error-prone, requiring annotators to delineate
and check slice-by-slice and may take several hours per case. In ad-
dition, due to the different imaging protocols/quality, and anatomical
structures, fast delineation of many organs is also a challenging task for
junior oncologists (Guo et al., 2020).

Recently, many deep learning-based methods have been proposed
to accurately and quickly segment organs from abdominal CT vol-
umes (Chen et al., 2021b; Ma et al., 2021; Wang et al., 2019). However,
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Table 1
Summary of several publicly available abdominal CT datasets. NSD: New Source Data; AFS: Annotate From Scratch. WAR: with the Whole Abdominal Region. To the best of our
knowledge, WORD dataset is the first whole abdominal organ dataset.

Dataset Year Organs Scans NSD AFS WAR

BTCV (Landman et al., 2017) 2015 Spleen, Kidney (L), Kidney (R), Gallbladder, Esophagus,
Liver, Stomach, Aorta, Inferior vena cava, Portal vein and
splenic vein, Pancreas, Adrenal gland(L), Adrenal gland(R),
Duodenum

50
√ √

×

DenseVNet (Gibson et al.,
2018)

2018 Spleen, Kidney (R), Gallbladder, Esophagus, Liver, Stomach,
Splenic vein, Pancreas and Duodenum

90 ×
√

×

CT-ORG (Rister et al., 2020) 2020 Lung, Bones, Liver, Kidneys and Bladder 140 × × ×

AbdomenCT-1K (Ma et al.,
2021)

2021 Spleen, Kidney, Liver and Pancreas 1112 × × ×

WORD dataset (ours) 2022 Liver, Spleen, Kidney(L), Kidney(R), Stomach, Gallbladder,
Esophagus, Pancreas, Duodenum, Colon, Intestine,
Adrenal(L), Adrenal(R), Rectum, Bladder, Head of Femur(L)
and Head of Femur(R)

170
√ √ √
Fig. 1. An example of 16 annotated abdominal organs in a CT scan. The left table lists
the annotated organs’ categories. (a), (b), (c) denote the visualization in axial, coronal,
and sagittal views, respectively. (d) represents the 3D rendering results of annotated
abdomen organs.

these methods were evaluated on small or in-house datasets or just seg-
mented very few organs. In addition, previous works have also shown
that some abdominal organ segmentation has achieved very promising
results, such as liver, spleen, and kidney (Ma et al., 2021). But there
are still some abdominal organ segmentation tasks that are unsolved
and challenging, especially for small and complex organs (Ma et al.,
2021; Chen et al., 2021b). The main reason caused these problems
may be lacking a publicly available large-scale real clinical dataset with
accurate whole abdominal organ annotation for research. So, develop-
ing high-quality and large-scale datasets and building benchmarks for
the whole abdominal organ segmentation task is vital to boost these
unsolved organ segmentation studies (Ma et al., 2021; Chen et al.,
2021b).

In this work, our goal is to collect a large-scale real clinical abdomen
dataset (WORD) with careful annotations. All scans in our dataset
are manually segmented in great detail, covering 16 organs in the
abdominal region. Due to privacy and ethical protection, collecting
real clinical data is challenging and time-consuming. In addition, an-
notating a large-scale 3D medical image segmentation dataset is very
expensive and labor-intensive, as it requires domain knowledge and
clinical experience. Recently, some researchers reused previous datasets
by providing annotations with pre-trained models or semi-automatic
methods (Ma et al., 2021; Rister et al., 2020), which may affect the an-
notator’s decision, especial regarding low-contrast boundary regions. In
contrast, WORD dataset was collected from a radiation therapy center
and annotated by one senior oncologist (with 7 years of experience) and
then checked, discussed and refined by an experts (more than 20 years
2

of experience). All of images were scanned before the radiotherapy
treatment, without any appearance enhancement, with a similar scan
location and with a similar image spacing, etc. Fig. 1 shows an example
from WORD.

Moreover, we investigate current methods on the WORD dataset,
including fully supervised segmentation and annotation-efficient meth-
ods. Specifically, we first evaluate several state-of-the-art medical seg-
mentation methods on the WORD, like Convolutional Neural Network-
based methods nnUNet (Isensee et al., 2021), Attention UNet (Oktay
et al., 2018), DeepLabV3+ (Chen et al., 2018a), UNet++ (Zhou et al.,
2019c) and ResUNet (Diakogiannis et al., 2020), and transformer-based
approaches like CoTr (Xie et al., 2021) and UNETR (Hatamizadeh
et al., 2022). After that, we investigate generalization ability of a pre-
trained model on the BTCV (Landman et al., 2017) and TCIA (Roth
et al., 2015). Due to previous datasets only have annotations of few
organs, we further annotate an open dataset for generalization ability
evaluation, where 20 cases with the whole abdominal region were
selected and annotated manually from the LiTS (Bilic et al., 2019)
dataset. Afterwards, we do the user study on this dataset to measure the
gap between deep learning models and three oncologists. Considering
these CT images have very high resolution, we investigate inference-
efficient learning to reduce the memory and time cost and accelerate
the inference procedure. Finally, we introduce a weakly supervised ab-
dominal organ segmentation method with scribble annotations, which
is desirable to reduce the annotation cost in the future. These attempts
can be used as a new abdominal organ segmentation benchmark for
further research. In summary, our contribution is two-fold:

(1) We build a new clinical whole abdominal organ segmentation
dataset (150 CT scans) and has more categories (16 organs) and
high-quality annotations than previous works (Landman et al.,
2017; Gibson et al., 2018; Rister et al., 2020; Ma et al., 2021).
In addition, we further annotate 20 cases from LiTS (Bilic et al.,
2019) for networks’ generalization evaluation.1

(2) We establish a new abdominal organ segmentation benchmark by
(1) evaluating the existing fully supervised segmentation meth-
ods, (2) measuring the gap between deep learning models and
oncologists, (3) investigating the pre-trained model generalization
ability on open datasets, (4) investigating the inference-efficient
learning for the high-resolution abdominal CT image segmenta-
tion, (5) introducing scribble-based weakly supervised methods
to reduce the labeling cost.

1 https://github.com/HiLab-git/WORD.

https://github.com/HiLab-git/WORD
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2. Related work

2.1. Abdominal organ segmentation datasets

Since clinical CT images of the whole abdominal region are very
private and challenging to collect and annotate, few datasets with
carefully annotated whole abdominal organs are publicly available. We
summarize these publicly available abdominal CT datasets in Table 1.
We consider the datasets with four or more annotated organs in this
work. The BTCV (Beyond The Cranial Vault) (Landman et al., 2017)
consists of 50 CT volumes, with 30 and 20 volumes used for training
and testing, respectively. In the BTCV dataset, 13 organs are annotated
manually, including the aorta, liver, spleen, right kidney, left kidney,
stomach, pancreas, gallbladder, esophagus, inferior vena cava, portal
vein and splenic vein, right adrenal gland, and left adrenal gland. The
DenseVNet (Gibson et al., 2018) has 90 CT scans, where 47 scans come
from the BTCV dataset (Landman et al., 2017), and the other 43 cases
come from TCIA data (Roth et al., 2015) each with annotations of
eight organs. The CT-ORG (Rister et al., 2020) is an open dataset that
contains 140 CT images, and five organs are annotated. Most of these
images come from a challenge training set (Bilic et al., 2019). The
AbdomenCT-1K dataset (Ma et al., 2021) extend five public singular
organ segmentation datasets to four classes (with 1062 volumes) and
a small clinical dataset (with 50 volumes coming from 20 patients).
This dataset contains four organ annotations: liver, kidney, spleen,
and pancreas. BTCV, DenseNet, and CT-ORG are limited by the small
scale or few annotated classes to boost this topic research. Although
AbdomenCT-1K is huge, the annotated organs are also too few to
evaluate the efficiency of the whole abdominal segmentation task.
Unlike these existing datasets, our dataset comes from a new medical
center with a large scale and more annotated organs, such as the colon,
intestine, rectum, etc. We believe WORD dataset is one of the most
comprehensive datasets for medical image segmentation.

2.2. Abdominal organ segmentation methods

Recently, deep learning-based methods have been widely used in
abdominal organ segmentation tasks, especially the UNet-based deep
networks (Ronneberger et al., 2015). The main challenge in this task
lies in complex anatomical structures, the unclear boundary of soft
tissues, high resolution of images, and extremely unbalanced sizes
among large and small organs, etc. Many works have attempted to
handle these challenges. Gibson et al. (2018) proposed a DenseVNet to
segment 8 organs from CT volumes, which enables high-resolution acti-
vation maps through memory-efficient dropout and feature reuse. Wang
et al. (2019) presented a novel framework for abdominal multi-organ
segmentation using organ-attention networks with reverse connections
and evaluated it on an in-house dataset. Liang et al. (2021) combined
the inter-and intra-patient deformation data augmentation with multi-
scale Attention-UNet (Schlemper et al., 2019) for accurate abdominal
multi-organ segmentation. Tang et al. (2021) proposed a batch-based
method plus random shifting strategy to boost the performance of
multi-organ segmentation from high-resolution abdomen CT volumes.
More recently, transformer-based methods (Cao et al., 2021; Chen
et al., 2021a) are used to explicitly model the long-range dependence
to capture the relationship of multi-organ for accurate segmentation.

Although the above methods have achieved promising results, they
are also limited by requiring large scale carefully annotated dataset.
To reduce annotation cost, Zhou et al. (2019b) proposed a co-training-
based semi-supervised method for abdominal multi-organ segmenta-
tion, which reduces almost half of annotation cost. Furthermore, Zhou
et al. (2019a) proposed a prior-aware neural network that incorpo-
rates anatomical priors on abdominal organ sizes to train models from
several partially-labeled datasets. This work first investigates more
annotation-efficient abdominal multi-organ segmentation methods with
sparse annotations (scribbles). In addition, we investigate inference-
efficient learning for the segmentation of high-resolution abdominal CT
images to reduce the memory and time cost in the test stage.
3

Table 2
Clinical characteristics of WORD. Others include some metastatic tumors, such as bone
metastasis and soft tissue metastasis.

Characteristics Train (n = 100) Validation (n = 20) Test (n = 30)

Age (median) 47 (28–75) 52 (32–78) 49 (26–72)

Male 63 12 13
Female 37 8 17

Prostatic cancer 28 7 10
Cervical cancer 29 6 5
Rectal cancer 26 3 8
Others 17 4 7

3. Word: Fully annotated clinical whole abdominal organ dataset

3.1. Dataset summary

The 150 CT scans in the WORD dataset were collected from 150
patients before the radiation therapy in a single center. All of them are
scanned by a SIEMENS CT scanner without appearance enhancement.
The clinical characteristics of the WORD dataset are listed in Table 2.
Each CT volume consists of 159 to 330 slices of 512 × 512 pixels,
with an in-plane resolution of 0.976 mm × 0.976 mm and slice spacing
of 2.5 mm to 3.0 mm, indicating that the WORD dataset is a very
high-resolution dataset. All scans of WORD dataset are exhaustively
annotated with 16 anatomical organs, including the liver, spleen, kid-
ney (L), kidney (R), stomach, gallbladder, esophagus, duodenum, colon,
intestine, adrenal, rectum, bladder, head of the femur (L) and head of
the femur (R). An example of image and annotation from the WORD
dataset is shown in Fig. 1. All images were anonymized and approved
by the ethics committee to protect privacy where all clinical treatment
details have been deleted. We randomly split WORD dataset into three
parts: 100 scans (20 115 slices) for training, 20 scans (4103 slices)
for validation, and 30 scans (6277 slices) for testing. Fig. 2 shows
the volume distributions of all annotated organs. It shows that the
extremely unbalanced distribution among large and small organs may
bring some challenges to the segmentation task. At the same time, we
further selected and annotated 20 CT scans from LiTS (Bilic et al., 2019)
as an external evaluation set. These scans cover the whole abdominal
region, each with 16 organ annotations.

3.2. Professional data annotation

Recently, the AbdomenCT-1K dataset (Ma et al., 2021) established
an abdominal organ dataset using the pre-trained model for predictions
and then refining by radiologists. At the same time, CT-ORG (Rister
et al., 2020) annotated the abdominal organ by using a semi-automatic
tool firstly (ITK-SNAP Yushkevich et al., 2006) and then refining man-
ually. However, these initial segmentation results could affect the
annotator’s decision, especial regarding low-contrast boundary regions.
Differently from AbdomenCT-1K (Ma et al., 2021) and CT-ORG (Rister
et al., 2020), all scans in the WORD dataset are annotated from scratch
manually. A senior oncologist (with 7 years of experience) uses ITK-
SNAP (Yushkevich et al., 2006) to delineate all organs slice-by-slice
in axial view. After that, an expert in oncology (more than 20 years
of experience) checks and revises these annotations carefully and dis-
cusses them in cases of disagreement to produce consensus annotations
and further ensure the annotation quality. Finally, these consensus
labels are released and used for methods or clinical application de-
velopment and evaluation. Note that all annotations and consensus
discussions obey the radiation therapy delineation guideline published
by Radiation Therapy Oncology Group (RTOG).2 Here, we analyze
the inconsistent ratio between the annotation of senior oncologist, the

2 https://www.rtog.org/.

https://www.rtog.org/
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Fig. 2. Volume distribution of 16 organs in WORD.
Table 3
Quantitative analysis of the inconsistent ratio (𝐷𝑆𝐶 (%)) between the annotation of senior oncologist, the expert and their consensus annotations.

Organs Liver Spleen Kidney (L) Kidney (R) Stomach Gallbladder Esophagus Pancreas

Senior 1.73 ± 0.03 1.34 ± 0.12 1.28 ± 0.09 1.36 ± 0.11 3.95 ± 0.52 6.86 ± 1.29 7.65 ± 2.24 7.49 ± 2.39
Expert 0.89 ± 0.01 0.93 ± 0.03 1.03 ± 0.08 0.97 ± 0.07 1.48 ± 0.35 2.97 ± 0.94 3.32 ± 1.25 2.89 ± 0.91

Organs Duodenum Colon Intestine Adrenal Rectum Bladder Head of Femur (L) Head of Femur (R)

Senior 9.67 ± 4.11 4.74 ± 2.35 3.66 ± 1.26 9.86 ± 4.38 3.76 ± 1.44 2.73 ± 0.89 1.78 ± 0.94 1.63 ± 0.46
Expert 3.33 ± 1.23 1.27 ± 0.23 1.48 ± 0.69 3.75 ± 1.73 1.46 ± 0.74 1.35 ± 0.39 0.96 ± 0.13 0.87 ± 0.09
expert and their consensus annotations in Table 3, suggesting that an-
notators’ discrepancy is minor and their consensus labels are reliable. In
the annotation stage, each volume roughly takes 1.2–2.6 h to annotate
all 16 organs and further requires 0.4–1.0 h to check, discuss and
refine the annotation. The WORD dataset takes us around 15 months
to collect, annotate and review, so we think it is precious and desirable
to share with the medical image analysis community.

3.3. Potential research topics

We can conduct many essential research topics on medical image
segmentation/detection methods and clinical application with the large
and carefully annotated abdominal multi-organ dataset. Besides, there
are some challenges in the WORD, including the imbalanced sam-
ple among large and small size organs, the high resolution, and the
complex anatomical structure. It can be used to develop or evaluate
clinical application, as it is very desirable to develop a tool or soft-
ware to assist oncologists in delineating organs quickly and accurately.
The WORD dataset also can be employed in general algorithm re-
search, such as fully-/semi-/weakly-supervised learning, domain adap-
tion/generalization, partially label and lifelong learning, etc. Here, we
roughly summarized the potential research topics as follows.

3.3.1. Fully-supervised abdominal organ segmentation and generalization
Fully supervised learning (Isensee et al., 2021) aims to efficiently

utilize the labeled data to achieve good results and solve the challenges
of imbalanced distributions and complex structures. It is a fundamental
topic and has been studied for many years. Here, we presented a new
abdominal organ segmentation dataset to boost abdominal organ seg-
mentation algorithm research, evaluation, and comparison. Afterwards,
we further build a publicly external evaluation dataset from LiTS (Bilic
et al., 2019) for segmentation models’ generalization evaluation. In
addition, the WORD dataset and the external dataset can be used to
4

develop clinical application or clinically applicable evaluations.
3.3.2. Abdominal organ segmentation with low computational cost and high
speed

For 3D abdominal CT scans, the inference stage always takes much
time and GPU memory due to the high dimension and resolution.
To deal with this issue, inference-efficient model (Feng et al., 2021)
is proposed to achieve the trade-off between high-performance and
low inference cost. However, very few works have been studied to
accelerate the inference of 3D medical image segmentation tasks (Tang
et al., 2021). Recently, knowledge distillation has achieved success
in several 2D natural image recognition tasks, which may have the
potential to handle the 3D medical image segmentation tasks (Mishra
and Marr, 2017).

3.3.3. Abdominal organ segmentation with low annotation cost
Pixel-wise abdominal organ annotation is very expensive, requir-

ing clinical experience and much time. Recently, annotation-efficient
learning (Luo et al., 2021a; Zhou et al., 2019b; Luo et al., 2022b,c)
has been introduced to reduce the labeling cost and improve the
network generalization ability by semi-/weakly-supervised learning,
domain adaptation strategies, etc. These strategies have been scorching
topics and show the potential to reduce annotation cost by utilizing
unlabeled data or sparse annotations. Reducing the annotation cost
for accurate abdominal organ segmentation is desirable, as it can
accelerate the model development and reduce cost. In this work, we
pay more attention to evaluating weakly supervised methods to reduce
labeling cost.

4. Experiments and analyses

4.1. Implementations and metrics

In this work, all methods are implemented, trained, and tested

by PyTorch 1.8 (Paszke et al., 2019) on a cluster with eight NVIDIA



Medical Image Analysis 82 (2022) 102642X. Luo et al.
Table 4
Performance comparison (𝐷𝑆𝐶 (%)) of 16 abdominal organs segmentation using ten recent segmentation methods.

Method nnUNet(2D) nnUNetV2(2D) ResUNet(2D) DeepLabV3+(2D) UNet++(2D) AttUNet(3D) nnUNet(3D) nnUNetV2(3D) UNETR(3D) CoTr(3D)

Liver 95.38 ± 4.45 96.19 ± 2.16 96.55 ± 0.89 96.21 ± 1.34 96.33 ± 1.40 96.00 ± 1.01 96.45 ± 0.85 96.59 ± 6.10 94.67 ± 1.92 95.58 ± 1.59
Spleen 93.33 ± 11.85 94.33 ± 7.72 95.26 ± 2.84 94.68 ± 5.64 94.64 ± 4.22 94.90 ± 1.63 95.98 ± 0.89 96.09 ± 8.10 92.85 ± 3.03 94.90 ± 1.37
Kidney (L) 90.05 ± 19.35 91.29 ± 18.15 95.63 ± 1.20 92.01 ± 13.00 93.36 ± 5.06 94.65 ± 1.38 95.40 ± 0.95 95.63 ± 9.20 91.49 ± 5.81 93.26 ± 3.07
Kidney (R) 89.86 ± 19.56 91.20 ± 17.22 95.84 ± 1.16 91.84 ± 14.41 93.34 ± 7.38 94.70 ± 2.78 95.68 ± 1.07 95.83 ± 9.00 91.72 ± 7.06 93.63 ± 3.01
Stomach 89.97 ± 4.96 91.12 ± 3.60 91.58 ± 2.86 91.16 ± 3.07 91.33 ± 3.13 91.15 ± 2.74 91.69 ± 2.50 91.57 ± 3.05 85.56 ± 6.12 89.99 ± 4.49
Gallbladder 78.43 ± 16.48 83.19 ± 12.22 82.83 ± 11.80 80.05 ± 17.92 81.21 ± 12.24 81.38 ± 10.95 83.19 ± 8.81 83.72 ± 8.19 65.08 ± 19.63 76.4 ± 16.48
Esophagus 78.08 ± 13.99 77.79 ± 13.51 77.17 ± 14.68 74.88 ± 14.69 78.36 ± 12.84 76.87 ± 15.12 78.51 ± 12.22 77.36 ± 13.66 67.71 ± 13.46 74.37 ± 14.92
Pancreas 82.33 ± 6.50 83.55 ± 5.87 83.56 ± 5.60 82.39 ± 6.68 84.43 ± 6.77 83.55 ± 6.20 85.04 ± 5.78 85.00 ± 5.95 74.79 ± 9.31 81.02 ± 7.23
Duodenum 63.47 ± 15.81 64.47 ± 15.87 66.67 ± 15.36 62.81 ± 15.21 65.99 ± 15.79 67.68 ± 14.01 68.31 ± 16.29 67.73 ± 16.75 57.56 ± 11.23 63.58 ± 14.88
Colon 83.06 ± 8.32 83.92 ± 8.45 83.57 ± 8.69 82.72 ± 8.79 83.22 ± 8.98 85.72 ± 8.50 87.41 ± 7.38 87.26 ± 8.25 74.62 ± 11.50 84.14 ± 7.82
Intestine 85.60 ± 4.08 86.83 ± 4.02 86.76 ± 3.56 85.96 ± 4.02 86.37 ± 4.01 88.19 ± 3.34 89.30 ± 2.75 89.37 ± 3.11 80.40 ± 4.59 86.39 ± 3.51
Adrenal 69.9 ± 11.07 70.0 ± 11.86 70.9 ± 10.12 66.82 ± 10.81 71.04 ± 10.65 70.23 ± 9.31 72.38 ± 8.98 72.98 ± 8.09 60.76 ± 8.32 69.06 ± 9.26
Rectum 81.66 ± 6.64 81.49 ± 7.37 82.16 ± 6.73 81.85 ± 6.67 81.44 ± 6.70 80.47 ± 5.44 82.41 ± 4.90 82.32 ± 5.26 74.06 ± 8.03 80.00 ± 5.40
Bladder 90.49 ± 14.73 90.15 ± 16.85 91.0 ± 13.50 90.86 ± 14.07 92.09 ± 11.53 89.71 ± 15.00 92.59 ± 8.27 92.11 ± 9.75 85.42 ± 18.17 89.27 ± 18.28
Head of Femur (L) 93.28 ± 5.31 93.28 ± 5.12 93.39 ± 5.11 92.01 ± 4.76 93.38 ± 5.12 91.90 ± 4.39 91.99 ± 4.72 92.56 ± 4.19 89.47 ± 6.40 91.03 ± 4.81
Head of Femur (R) 93.78 ± 4.38 93.93 ± 4.29 93.88 ± 4.30 92.29 ± 4.01 93.88 ± 4.21 92.43 ± 3.68 92.74 ± 3.63 92.49 ± 4.03 90.17 ± 4.00 91.87 ± 3.32

Mean 84.92 ± 5.39 85.80 ± 5.27 86.67 ± 4.81 84.91 ± 5.05 86.28 ± 3.96 86.21 ± 4.78 87.44 ± 4.33 87.41 ± 4.57 79.77 ± 4.92 84.66 ± 5.45
Table 5
Performance comparison (𝐻𝐷95 (mm)) of 16 abdominal organs segmentation using ten recent segmentation methods.

Method nnUNet(2D) nnUNetV2(2D) ResUNet(2D) DeepLabV3+(2D) UNet++(2D) AttUNet(3D) nnUNet(3D) nnUNetV2(3D) UNETR(3D) CoTr(3D)

Liver 7.94 ± 17.23 7.34 ± 16.48 4.64 ± 7.37 6.81 ± 18.30 11.77 ± 22.17 3.61 ± 1.75 3.31 ± 1.38 3.17 ± 0.51 8.36 ± 14.13 7.47 ± 12.18
Spleen 14.46 ± 41.27 9.53 ± 33.84 8.70 ± 30.11 8.93 ± 33.61 9.39 ± 32.14 2.74 ± 1.61 2.15 ± 0.50 2.12 ± 0.47 14.84 ± 34.62 8.14 ± 24.43
Kidney (L) 10.53 ± 29.43 10.33 ± 29.52 5.40 ± 15.85 10.40 ± 29.39 13.09 ± 29.75 6.28 ± 19.19 6.07 ± 19.38 2.46 ± 0.70 23.37 ± 39.28 16.42 ± 27.79
Kidney (R) 10.73 ± 28.49 10.85 ± 28.41 2.47 ± 0.97 10.02 ± 28.00 21.84 ± 42.61 2.86 ± 1.46 2.35 ± 0.81 2.24 ± 0.47 7.90 ± 19.08 12.79 ± 29.76
Stomach 19.04 ± 20.82 13.97 ± 12.08 9.98 ± 6.62 11.01 ± 8.45 15.40 ± 21.44 8.23 ± 6.07 8.47 ± 5.96 9.47 ± 7.61 19.25 ± 23.19 10.26 ± 9.49
Gallbladder 8.90 ± 10.33 7.91 ± 8.67 9.48 ± 12.97 7.36 ± 9.43 14.68 ± 28.48 5.11 ± 3.41 5.24 ± 5.30 6.04 ± 5.63 12.72 ± 15.39 11.32 ± 15.57
Esophagus 6.90 ± 9.72 6.70 ± 7.80 6.70 ± 7.60 7.60 ± 8.45 5.85 ± 3.93 5.35 ± 3.79 5.49 ± 4.34 5.83 ± 4.64 9.31 ± 8.41 6.29 ± 4.53
Pancreas 7.92 ± 7.34 7.82 ± 6.76 7.82 ± 7.15 7.67 ± 7.10 7.50 ± 8.45 6.96 ± 7.39 6.84 ± 7.90 6.87 ± 7.86 10.66 ± 8.56 8.88 ± 10.61
Duodenum 25.18 ± 18.39 23.29 ± 14.39 21.79 ± 12.83 21.61 ± 13.88 23.67 ± 13.80 21.61 ± 12.86 21.30 ± 14.22 21.15 ± 14.26 25.15 ± 21.96 24.83 ± 15.47
Colon 15.56 ± 12.97 15.68 ± 14.0 17.41 ± 15.22 15.95 ± 14.07 16.97 ± 13.92 10.21 ± 12.87 9.99 ± 13.17 10.42 ± 14.27 20.32 ± 14.37 12.41 ± 12.75
Intestine 10.46 ± 6.24 8.96 ± 4.83 9.54 ± 7.20 9.57 ± 5.21 10.06 ± 6.01 5.68 ± 3.93 5.14 ± 3.68 5.27 ± 4.29 12.62 ± 7.63 7.96 ± 5.58
Adrenal 6.06 ± 3.99 6.42 ± 4.30 6.67 ± 4.59 7.14 ± 4.80 7.14 ± 4.97 5.98 ± 4.01 5.46 ± 4.04 5.43 ± 3.82 8.73 ± 5.30 6.76 ± 6.99
Rectum 10.62 ± 5.50 11.15 ± 7.33 10.62 ± 6.52 10.96 ± 6.94 11.54 ± 8.13 11.67 ± 6.37 11.57 ± 6.95 12.39 ± 8.12 12.79 ± 6.38 11.26 ± 6.06
Bladder 5.88 ± 7.21 4.97 ± 5.26 5.02 ± 6.17 5.14 ± 6.22 5.06 ± 6.56 4.83 ± 4.66 3.68 ± 2.23 4.17 ± 3.60 14.71 ± 40.82 14.34 ± 43.85
Head of Femur (L) 6.56 ± 8.09 6.54 ± 8.13 6.56 ± 8.30 7.62 ± 7.93 6.66 ± 8.22 6.93 ± 6.27 35.18 ± 88.78 17.05 ± 62.15 38.11 ± 98.44 19.42 ± 70.83
Head of Femur (R) 5.89 ± 7.55 5.74 ± 6.76 5.98 ± 7.20 7.02 ± 6.76 16.92 ± 63.02 6.06 ± 4.78 33.03 ± 82.19 27.29 ± 81.62 38.62 ± 99.75 26.78 ± 78.40

Mean 10.79 ± 10.29 9.88 ± 9.16 8.60 ± 6.47 9.67 ± 9.06 12.35 ± 15.87 7.13 ± 4.68 10.33 ± 26.65 8.84 ± 22.63 17.34 ± 28.80 12.83 ± 21.96
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GTX1080TI GPUs. We choose the powerful nnUNet3 (Isensee et al.,
2021) as our baseline for fair comparisons. nnUNet is a self-
configuration segmentation framework without needing any manual
effort for data processing, training planning (network architectures and
parameters setting, etc.), and post-processing, and has won more than
19 medical segmentation challenges (Isensee et al., 2021). Due to that
the nnUNet just provides implementation of the vanilla UNet network,
we further adapt it to support more network architectures. Note that we
use the public implementations of the compared methods.4 We employ
the default settings of nnUNet as our experimental settings, where the
batch size is 2 for 3D methods and 12 for 2D methods, the total epoch is
1000, and the loss function is a combination of cross-entropy and dice
loss. All the models are trained and tested based on the default settings,
except that we do not use the test time augmentation, as each model
needs more than six GPU days to train, and each volume takes more
than five minutes to infer. We use two widely-used metrics to measure
the segmentation quality in this work: (1) Dice similarity coefficient
(𝐷𝑆𝐶) is used to evaluate the pixel-wise overlap between the ground
truth and prediction; (2) 95% Hausdorff Distance (𝐻𝐷95) that measures
distance difference between the boundaries of the ground truth and
prediction. The implementations of 𝐷𝑆𝐶 and 𝐻𝐷95 are available.5

4.2. Fully-supervised abdominal organ segmentation

We first evaluate some existing state-of-the-art (SOTA) methods on
the WORD dataset. Then, we further evaluate the gap between the deep
network and three oncologists. Finally, we investigate the domain shift
between the WORD dataset and three public datasets (BTCV Landman
et al., 2017, TCIA Roth et al., 2015, and LiTS Bilic et al., 2019).

3 https://github.com/MIC-DKFZ/nnUNet.
4 https://github.com/qubvel/segmentation_models.pytorch.
5

5

https://github.com/loli/medpy.
4.2.1. Evaluations of SOTA methods on the WORD
For deep learning-based clinical application, fully supervised learn-

ing is one of the most basic and popular solutions, especially in au-
tomatic multi-organ delineation systems. In this work, we investigate
several existing SOTA methods on the WORD dataset, including convo-
lutional neural networks-based networks, nnUNet (Isensee et al., 2021)
and its variations (both 2D and 3D), ResUNet (Diakogiannis et al.,
2020), DeepLabV3+ (Chen et al., 2018a), UNet++ (Zhou et al., 2019c)
and Attention-UNet (AttUNet) (Oktay et al., 2018), and transformer-
based architectures, CoTr (Xie et al., 2021) and UNETR (Hatamizadeh
et al., 2022). The quantitative segmentation results in term of 𝐷𝑆𝐶 and
𝐻𝐷95 are presented in Tables 4 and 5, respectively. It can be observed
hat all CNN-based methods outperform transformer-based CoTr (Xie
t al., 2021) and UNETR (Hatamizadeh et al., 2022). Moreover, the
esults further show that all SOTA methods can achieve very promising
esults (𝐷𝑆𝐶 > 85%) on large organs, such as the liver, spleen, kidney,
tomach, bladder, and head of the femur. It has also proven that the
arge organ segmentation task is a well-solved problem if there are
nough high-quality annotated samples. But for the gallbladder, pan-
reas, and rectum segmentation, almost all methods get poor results,
here 𝐷𝑆𝐶 < 85% and 𝐻𝐷95 > 10 mm. In addition, the segmentation

esults of esophagus, duodenum and adrenal are extremely bad, where
lmost all methods achieve 𝐷𝑆𝐶 < 70%. All the above results show
hat the segmentation of small organs remains challenging and needs
ore attention to be paid. However, few works and researchers have

ocused on solving these challenging tasks. One of the critical reasons is
acking large-scale and publicly available datasets and benchmarks. To
lleviate these challenges, we build the WORD dataset and correspond-
ng benchmarks to boost research in the medical image computing
ommunity.

.2.2. User study by three oncologists
Then, we employ a comprehensive user study to measure the gap

etween the network and three oncologists. Following the general
orkflow of deep learning-assisted organs delineation systems (Chen
t al., 2021b), we invite three junior oncologists (with 3 years of
xperience) from three different hospitals to revise model-generated

https://github.com/MIC-DKFZ/nnUNet
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/loli/medpy
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Fig. 3. User study based on three junior oncologists independently, each of them comes from a different hospital.
Table 6
The segmentation result (𝐷𝑆𝐶 (%)) of the BTCV (Landman et al., 2017), TCIA (Roth et al., 2015) and LiTS (Bilic et al., 2019) using the pre-trained (on the WORD) nnUNetV2
2D/3D).

DataSet TCIA BTCV LiTS

Method nnUNetV2 (2D) nnUNetV2 (3D) nnUNetV2 (2D) nnUNetV2 (3D) nnUNetV2 (2D) nnUNetV2 (3D)

Liver 91.27 ± 3.71 92.59 ± 3.72 86.63 ± 7.79 93.36 ± 5.75 92.37 ± 3.48 94.20 ± 1.41
Spleen 85.47 ± 13.97 86.31 ± 12.57 72.43 ± 19.36 88.89 ± 11.78 84.73 ± 14.43 95.28 ± 5.44
Kidney (L) 80.24 ± 13.40 91.44 ± 5.13 64.57 ± 23.94 87.36 ± 16.25 79.23 ± 19.24 96.33 ± 3.83
Kidney (R) – – 37.32 ± 33.71 56.22 ± 42.99 78.51 ± 22.39 96.07 ± 4.84
Stomach 54.32 ± 21.73 73.37 ± 17.35 51.73 ± 22.74 78.52 ± 18.54 68.46 ± 15.88 86.43 ± 13.68
Gallbladder 54.00 ± 32.36 78.49 ± 18.33 40.38 ± 32.44 63.82 ± 32.05 49.05 ± 32.97 60.15 ± 34.37
Esophagus 54.62 ± 21.38 61.22 ± 18.85 47.10 ± 18.37 62.53 ± 15.28 84.77 ± 5.04 87.13 ± 6.80
Pancreas 51.38 ± 21.59 68.53 ± 15.25 49.64 ± 17.59 73.64 ± 13.15 59.59 ± 12.78 89.43 ± 4.16
Duodenum 33.15 ± 18.92 51.14 ± 15.78 24.19 ± 14.78 56.19 ± 15.62 45.01 ± 15.52 76.45 ± 6.4
Colon – – – – 75.42 ± 14.65 87.54 ± 8.32
Intestine – – – – 64.35 ± 10.77 83.60 ± 6.87
Adrenal – – 17.01 ± 20.72 41.72 ± 32.50 62.86 ± 14.16 85.89 ± 4.49
Rectum – – – – 68.93 ± 24.83 80.61 ± 19.57
Bladder – – – – 91.63 ± 5.94 92.88 ± 7.43
Head of Femur (L) – – – – 93.26 ± 2.37 95.55 ± 2.63
Head of Femur (R) – – – – 92.73 ± 3.12 94.98 ± 3.51

Mean 63.06 ± 7.79 75.39 ± 5.50 49.10 ± 7.34 70.23 ± 10.97 74.43 ± 8.29 87.66 ± 7.98
predictions independently until the results are clinically acceptable.
We randomly selected 20 predictions produced by nnUNetV2 (3D)
for the user study and calculated the revised results. The quantitative
comparison in terms of 𝐷𝑆𝐶 between the nnUNet predictions and three
ncologists’ revised results are presented in Fig. 3. For organs with
arge size and clear boundary, the deep network can produce promising
esults that are very close to clinically applicable with just a few
evisions. However, there is a massive gap between the deep network
nd junior oncologists in small organ segmentation. It indicates that the
eep network has the potential to reduce the burden of oncologists in
nnotating large organs. In the future, combining the user interaction
ith the deep network may help further to reduce the burden of
elineating small organs and accelerate the clinical workflow (Luo
t al., 2021c; Wang et al., 2018).

.2.3. Generalization on BTCV, TCIA and LiTS
We further investigate the domain shift between the WORD dataset

nd three widely-used public datasets BTCV (Landman et al., 2017),
CIA (Roth et al., 2015) and LiTS (Bilic et al., 2019). The differences be-
ween the WORD dataset and BTCV (Landman et al., 2017), TCIA (Roth
t al., 2015) and LiTS (Bilic et al., 2019) lie in (1) coming from different
6

centers/scanners/countries; (2) suffering from different diseases; (3)
with different phase/contrast enhancement; (4) with different voxel
spacing; (5) annotating by different oncologists/radiologists. All of
them could affect the generalizability of the deep network and further
limit clinical practice. In this work, we use the pre-trained model on
the WORD dataset to infer the samples from BTCV (Landman et al.,
2017) (47 scans), TCIA (Roth et al., 2015) (43 scans) and LiTS (Bilic
et al., 2019) (20 scans) to estimate the domain gap. Tables 6 and 7
list the results of 𝐷𝑆𝐶 and 𝐻𝐷95, respectively. Here, we just consider
the official annotated organs of the BTCV (Landman et al., 2017) and
TCIA (Roth et al., 2015) datasets. It can be found that there are very
significant domain shifts between WORD dataset and BTCV (Landman
et al., 2017), TCIA (Roth et al., 2015) datasets, as the pre-trained
nnUNet on the WORD dataset performs very worse on the BTCV (Land-
man et al., 2017) and TCIA (Roth et al., 2015). For the LiTS (Bilic
et al., 2019) dataset, the nnUNetV2(3D) achieves very encouraging
results, even better than the results of WORD. But the nnUNetV2(2D)
still performs badly, which may be caused by that the nnUNetV2(2D)
did not consider the relationship between neighboring slices. It also
indicates that the model generalization for the multi-site abdominal
organ task is not a solved problem. Fig. 4 shows some segmentation
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Table 7
The segmentation result (𝐻𝐷95 (mm)) of the BTCV (Landman et al., 2017), TCIA (Roth et al., 2015) and LiTS (Bilic et al., 2019) using the pre-trained (on the WORD) nnUNetV2
(2D/3D).

DataSet TCIA BTCV LiTS

Method nnUNetV2 (2D) nnUNetV2 (3D) nnUNetV2 (2D) nnUNetV2 (3D) nnUNetV2 (2D) nnUNetV2 (3D)

Liver 29.39 ± 20.67 17.11 ± 24.27 44.73 ± 36.15 13.96 ± 23.73 32.28 ± 27.58 11.57 ± 9.76
Spleen 87.32 ± 69.61 31.11 ± 45.85 128.28 ± 59.62 37.46 ± 67.09 90.59 ± 63.72 12.13 ± 21.25
Kidney (L) 92.93 ± 49.56 15.44 ± 39.47 107.00 ± 40.90 20.34 ± 38.08 96.44 ± 51.64 12.15 ± 29.13
Kidney (R) – – 71.58 ± 43.50 27.80 ± 28.60 69.78 ± 64.44 10.16 ± 34.59
Stomach 43.17 ± 23.49 26.75 ± 22.28 65.47 ± 42.91 31.42 ± 40.64 47.33 ± 31.66 17.87 ± 28.48
Gallbladder 34.94 ± 40.91 7.65 ± 11.62 53.34 ± 61.11 16.69 ± 21.80 28.22 ± 38.44 18.63 ± 22.57
Esophagus 17.41 ± 9.98 15.85 ± 9.66 22.25 ± 15.17 18.81 ± 18.02 4.44 ± 2.17 5.91 ± 8.08
Pancreas 31.37 ± 8.59 15.59 ± 13.67 30.15 ± 15.12 13.12 ± 18.01 27.21 ± 11.79 4.93 ± 3.66
Duodenum 34.09 ± 14.13 35.07 ± 18.54 50.97 ± 26.19 29.00 ± 15.09 25.97 ± 9.99 15.75 ± 9.52
Colon – – – – 31.89 ± 14.66 24.82 ± 45.11
Intestine – – – – 31.15 ± 10.63 12.11 ± 6.55
Adrenal – – 26.28 ± 37.47 5.29 ± 9.75 6.11 ± 3.27 2.22 ± 0.72
Rectum – – – – 44.38 ± 111.99 10.27 ± 9.8
Bladder – – – – 33.46 ± 117.57 54.35 ± 149.16
Head of Femur (L) – – – – 32.35 ± 115.82 30.88 ± 116.82
Head of Femur (R) – – – – 59.42 ± 161.8 58.08 ± 162.04

Mean 46.33 ± 20.34 20.57 ± 12.30 60.00 ± 15.01 21.39 ± 15.96 41.31 ± 47.99 18.86 ± 50.87
Fig. 4. Visual comparison of segmentation performance on four different datasets. All
predictions were produced by the nnUNetV2 (3D) pre-trained on the WORD.

results of different datasets. These results are generated by a pre-
trained nnUNetV2(3D) on the WORD. It can be observed that the
results of TCIA and BTCV are inaccurate, which indicates that there is
a significant domain gap between TCIA/BTCV and WORD. In contrast,
7

Fig. 5. Intensity distributions comparison of LiTS, BTCV, TCIA and WORDs. HU means
Hounsfield Unit.

the result of LiTS is better and more promising; the reason may be the
domain gap between LiTS and WORD dataset is minor. In addition, we
further analyze the intensity distributions between LiTS (Bilic et al.,
2019), BTCV (Landman et al., 2017), TCIA (Roth et al., 2015), and
WORD in Fig. 5. It shows there are bigger intensity distribution gaps
between WORD dataset and BTCV/TCIA than LiTS, which conforms to
segmentation results.

4.3. Abdominal organ segmentation with low computational cost and high
speed

Although large-scale deep models have achieved promising results
for abdominal organ segmentation (Isensee et al., 2021; Zhou et al.,
2019a; Tang et al., 2021), these heavy models require various ex-
pensive computations and storage components and a long inference
time (Qin et al., 2021). In addition, the whole abdominal CT image
has a very high resolution, which further increases the GPU mem-
ory budget and computational cost (Qin et al., 2021; Tang et al.,
2021). So, it is desirable to investigate the high-performance and low
computational cost method for abdominal organ segmentation, and
it is also suitable for clinical scenarios. This study investigates the
efficient abdominal organ segmentation topic and compares several
lightweight network-based and knowledge distillation methods on the
WORD. Firstly, we compare three lightweight segmentation networks’
performance in abdominal organ segmentation, ESPNet (Nuechterlein
and Mehta, 2018), DMFNet (Chen et al., 2019) and LCOVNet (Zhao
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Table 8
Quantitative comparison between various efficient segmentation methods in term of 𝐷𝑆𝐶 (%). The teacher network is the well trained nnUNetV2(3D).

Method nnUNetV2(3D) ESPNet ESPNet+KD DMFNet DMFNet+KD LCOVNet LCOVNet+KD

Liver 96.59 ± 6.10 76.47 ± 19.12 94.67 ± 1.92 95.80 ± 0.79 95.96 ± 0.76 95.37 ± 1.20 95.89 ± 0.58
Spleen 96.09 ± 8.10 84.54 ± 19.81 92.85 ± 3.03 94.25 ± 2.15 94.64 ± 2.53 94.6 ± 2.08 95.40 ± 2.14
Kidney (L) 95.63 ± 9.20 85.23 ± 20.96 91.49 ± 5.81 94.72 ± 0.97 94.70 ± 1.01 94.78 ± 1.18 95.17 ± 1.13
Kidney (R) 95.83 ± 9.00 89.65 ± 15.74 91.72 ± 7.06 95.00 ± 1.12 94.96 ± 1.19 95.08 ± 1.14 95.78 ± 0.84
Stomach 91.57 ± 3.05 82.87 ± 12.06 85.56 ± 6.12 89.69 ± 3.43 89.88 ± 5.24 90.06 ± 3.32 90.86 ± 3.82
Gallbladder 83.72 ± 8.19 49.02 ± 29.45 65.08 ± 19.63 77.12 ± 17.7 79.84 ± 11.81 75.48 ± 13.46 78.87 ± 11.8
Esophagus 77.36 ± 13.66 59.46 ± 23.21 67.71 ± 13.46 74.41 ± 12.08 74.10 ± 14.81 76.51 ± 11.87 74.55 ± 13.55
Pancreas 85.00 ± 5.95 56.35 ± 21.93 74.79 ± 9.31 81.90 ± 6.88 81.66 ± 7.12 81.46 ± 9.11 82.59 ± 7.54
Duodenum 67.73 ± 16.75 38.39 ± 22.04 57.56 ± 11.23 63.96 ± 16.44 66.66 ± 16.18 66.55 ± 16.02 68.23 ± 15.04
Colon 87.26 ± 8.25 71.54 ± 12.12 74.62 ± 11.50 83.77 ± 8.45 83.51 ± 7.68 85.61 ± 7.19 84.22 ± 7.32
Intestine 89.37 ± 3.11 72.44 ± 8.26 80.40 ± 4.59 86.38 ± 3.77 86.95 ± 3.11 87.36 ± 3.55 87.19 ± 3.06
Adrenal 72.98 ± 8.09 25.41 ± 20.05 60.76 ± 8.32 68.26 ± 7.83 66.73 ± 8.13 70.08 ± 8.67 69.82 ± 8.54
Rectum 82.32 ± 5.26 72.48 ± 9.86 74.06 ± 8.03 79.24 ± 7.09 79.26 ± 8.57 80.64 ± 7.21 79.99 ± 6.82
Bladder 92.11 ± 9.75 89.83 ± 8.59 85.42 ± 18.17 87.54 ± 17.11 88.18 ± 15.91 87.6 ± 15.88 88.18 ± 17.64
Head of Femur (L) 92.56 ± 4.19 84.32 ± 4.98 89.47 ± 6.40 91.71 ± 4.44 91.99 ± 4.61 91.74 ± 4.36 92.48 ± 3.75
Head of Femur (R) 92.49 ± 4.03 89.12 ± 2.69 90.17 ± 4.00 92.04 ± 3.22 92.55 ± 3.93 92.00 ± 3.58 93.23 ± 3.46

Mean 87.41 ± 4.57 70.45 ± 7.29 79.77 ± 4.92 84.74 ± 5.65 85.1 ± 5.09 85.31 ± 5.02 85.82 ± 4.89
Table 9
Quantitative comparison between various efficient segmentation methods in term of 𝐻𝐷95 (mm). The teacher network is the well trained nnUNetV2(3D).

Method nnUNetV2(3D) ESPNet ESPNet+KD DMFNet DMFNet+KD LCOVNet LCOVNet+KD

Liver 3.17 ± 0.51 22.33 ± 16.56 3.89 ± 1.12 3.79 ± 0.96 3.45 ± 0.84 15.25 ± 52.03 5.52 ± 6.11
Spleen 2.12 ± 0.47 8.98 ± 11.86 14.35 ± 37.18 4.11 ± 5.55 4.63 ± 7.24 3.64 ± 3.95 4.32 ± 7.09
Kidney (L) 2.46 ± 0.70 9.94 ± 15.51 4.52 ± 4.65 2.79 ± 0.52 2.91 ± 0.64 2.81 ± 0.74 3.19 ± 0.83
Kidney (R) 2.24 ± 0.47 5.06 ± 6.34 2.87 ± 0.91 2.64 ± 0.49 2.61 ± 0.48 2.56 ± 0.45 2.81 ± 0.52
Stomach 9.47 ± 7.61 16.8 ± 14.66 19.0 ± 24.07 9.41 ± 5.50 10.83 ± 9.36 9.10 ± 5.49 15.97 ± 32.96
Gallbladder 6.04 ± 5.63 20.37 ± 18.03 12.26 ± 13.69 6.57 ± 8.71 6.21 ± 6.91 6.42 ± 4.86 11.86 ± 26.18
Esophagus 5.83 ± 4.64 15.49 ± 14.52 10.5 ± 10.36 6.39 ± 4.83 6.17 ± 4.37 5.97 ± 3.23 7.09 ± 8.06
Pancreas 6.87 ± 7.86 25.18 ± 22.03 11.49 ± 9.72 8.02 ± 8.38 8.23 ± 8.84 9.91 ± 13.95 8.40 ± 10.69
Duodenum 21.15 ± 14.26 41.61 ± 19.34 32.64 ± 30.05 23.28 ± 14.73 20.32 ± 13.11 20.65 ± 13.35 19.40 ± 11.39
Colon 10.42 ± 14.27 73.68 ± 83.07 20.68 ± 13.62 11.18 ± 11.71 11.11 ± 12.13 9.55 ± 11.72 12.51 ± 13.22
Intestine 5.27 ± 4.29 17.47 ± 8.02 17.64 ± 7.75 6.85 ± 4.34 6.59 ± 4.02 6.04 ± 3.6 6.82 ± 3.86
Adrenal 5.43 ± 3.82 32.45 ± 21.58 10.45 ± 11.40 6.30 ± 3.24 6.75 ± 4.41 5.82 ± 4.44 6.06 ± 4.07
Rectum 12.39 ± 8.12 18.35 ± 8.25 18.87 ± 19.96 11.41 ± 5.51 12.48 ± 6.14 10.16 ± 4.55 12.07 ± 6.68
Bladder 4.17 ± 3.60 5.10 ± 2.74 20.03 ± 50.47 5.93 ± 6.02 5.30 ± 4.87 6.89 ± 6.67 6.24 ± 8.67
Head of Femur (L) 17.05 ± 62.15 12.69 ± 4.91 22.97 ± 58.09 6.52 ± 6.52 6.58 ± 6.61 17.68 ± 58.9 17.09 ± 55.62
Head of Femur (R) 27.29 ± 81.62 9.41 ± 3.49 18.18 ± 21.9 6.14 ± 4.33 6.10 ± 5.60 30.83 ± 93.82 6.50 ± 5.78
Mean 8.84 ± 22.63 20.93 ± 18.13 15.02 ± 16.30 7.58 ± 3.72 7.52 ± 3.59 10.21 ± 25.87 9.11 ± 13.87
Fig. 6. Different types of medical image annotation, the first and second rows show
the visualization in 2D and 3D spaces, respectively.

et al., 2021). ESPNet (Nuechterlein and Mehta, 2018) proposed an
efficient spatial pyramid block for high-speed brain tumor segmenta-
tion. DMFNet (Chen et al., 2019) combined point-wise (Zhang et al.,
2018), group-wise (Chen et al., 2018b) and atrous (Chen et al., 2017)
8

convolutions to reduce the computational cost and boost brain tumor
segmentation performance. LCOVNet (Zhao et al., 2021) proposed
an attention based spatiotemporal separable convolution for efficient
COVID-19 pneumonia lesion segmentation. Afterwards, we study the
knowledge distillation strategy for the efficient high-resolution image
segmentation (Hinton et al., 2015). In general, knowledge distilla-
tion aims to transfer the knowledge of a heavy model (teacher) to
a lightweight model (student) and encourages the student to achieve
similar or comparable results to the teacher. Following the general
knowledge distillation (Hinton et al., 2015; Qin et al., 2021), we used a
pre-trained nnUNetV2(3D) as the teacher model and employed the logit
output of nnUNetV2(3D) to guide the student models (ESPNet, DMFNet
and LCOVNet). Tables 8 and 9 list the quantitative results of different
methods in terms of 𝐷𝑆𝐶 and 𝐻𝐷95. It can be observed that the knowl-
edge distillation strategy can improve student models’ performance.
In Table 12, we further analyze the model complexity of the teacher
network and student networks in the same software and hardware
environments.6 These results show that combining lightweight net-
works and knowledge distillation can achieve a better trade-off between
performance and computational cost. This study further indicates that
exploring more power lightweight networks and knowledge distillation
strategies is a potential solution for high-performance, fast-speed and

6 https://github.com/sovrasov/flops-counter.pytorch.

https://github.com/sovrasov/flops-counter.pytorch
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Table 10
Labeling cost of scribble annotation compared with dense annotation. Here, we reported the percentage of labeled voxels between scribble and dense annotation.

Background Liver Spleen Kidney (L) Kidney (R) Stomach Gallbladder Esophagus Pancreas

Ratio (%) 0.23 ± 0.03 1.79 ± 0.30 2.82 ± 0.51 1.89 ± 0.51 1.95 ± 0.42 1.97 ± 0.34 7.32 ± 3.75 9.99 ± 3.90 4.57 ± 2.11

Duodenum Colon Intestine Adrenal Rectum Bladder Head of Femur (L) Head of Femur (R)

Ratio (%) 5.90 ± 3.23 1.80 ± 0.36 1.75 ± 0.33 19.76 ± 4.34 2.35 ± 1.19 1.58 ± 1.19 1.23 ± 0.25 1.08 ± 0.28
Table 11
Comparison between various weakly-supervised segmentation methods in the term of 𝐷𝑆𝐶 (%), all methods based on the same backbone (2D
ResUNet) and same experiment settings. HF: Head of femur.

Method pCE pCE+CRF Loss pCE+EM pCE+IVM pCE+EM+IVM Mask

Liver 93.86 ± 0.88 73.28 ± 3.51 92.62 ± 1.67 88.46 ± 2.48 90.22 ± 1.92 96.55 ± 0.89
Spleen 89.43 ± 4.27 81.71 ± 8.16 87.25 ± 5.98 88.67 ± 6.69 91.42 ± 3.40 95.26 ± 2.84
Kidney (L) 87.68 ± 6.48 92.46 ± 4.58 88.68 ± 3.36 92.02 ± 2.89 92.13 ± 2.47 95.63 ± 1.20
Kidney (R) 90.02 ± 4.11 92.84 ± 4.17 88.49 ± 3.78 90.59 ± 2.55 92.07 ± 2.78 95.84 ± 1.16
Stomach 87.09 ± 4.24 86.64 ± 4.30 87.38 ± 3.61 86.98 ± 4.44 86.17 ± 2.89 91.58 ± 2.86
Gallbladder 62.13 ± 18.78 63.51 ± 20.52 65.21 ± 18.94 65.09 ± 16.67 70.64 ± 18.19 82.83 ± 11.80
Esophagus 34.99 ± 10.70 55.53 ± 13.77 41.20 ± 13.38 54.22 ± 13.09 62.53 ± 13.10 77.17 ± 14.68
Pancreas 72.27 ± 7.26 75.27 ± 7.34 72.66 ± 7.40 74.30 ± 7.15 76.20 ± 6.66 83.56 ± 5.60
Duodenum 52.37 ± 11.07 56.59 ± 12.57 57.70 ± 13.05 55.06 ± 12.16 58.47 ± 13.15 66.67 ± 15.36
Colon 72.65 ± 10.04 66.95 ± 10.68 76.03 ± 9.90 74.21 ± 9.84 78.66 ± 9.38 83.57 ± 8.69
Intestine 75.37 ± 5.28 69.71 ± 5.74 76.56 ± 5.17 75.07 ± 4.31 80.44 ± 3.67 86.76 ± 3.56
Adrenal 36.26 ± 10.20 46.09 ± 10.27 31.44 ± 10.04 39.86 ± 11.03 43.46 ± 10.79 70.90 ± 10.12
Rectum 70.77 ± 10.61 28.66 ± 14.53 70.47 ± 9.86 71.20 ± 8.08 69.62 ± 9.55 82.16 ± 6.73
Bladder 82.77 ± 13.92 87.07 ± 16.42 83.79 ± 16.43 78.76 ± 13.58 68.52 ± 11.17 91.00 ± 13.50
HF (L) 73.12 ± 8.65 86.50 ± 4.33 80.39 ± 7.58 82.41 ± 5.24 83.85 ± 3.70 93.39 ± 5.11
HF (R) 72.19 ± 8.18 87.73 ± 4.14 82.6 ± 6.74 82.92 ± 5.34 84.53 ± 3.21 93.88 ± 4.30

Mean 72.06 ± 19.78 71.91 ± 20.53 73.90 ± 19.57 74.99 ± 17.02 76.81 ± 16.01 86.67 ± 4.81
Table 12
Complexity comparison between various networks. Params and MACs mean the model parameters and
multiply-accumulate operations. The MACs and Inference Time were tested on an NVIDIA GTX1080TI GPU
with the input size of 64 × 160 × 160.

Network Params (M) MAC (G) Inference time (s)

nnUNetV2(3D) 31.18 580.77 0.47
DMFNet 3.87 21.50 0.28
ESPNet 4.45 458.78 0.29
LCOVNet 0.82 100.21 0.21
low computational cost abdominal organ segmentation (Feng et al.,
2021; Qin et al., 2021).

4.4. Abdominal organ segmentation with low annotation cost

Recently, many annotation-efficient learning-based works have been
employed to reduce medical image annotation cost (Li et al., 2020; Luo
et al., 2021a,b; Xia et al., 2020). However, most of them are semi-
supervised learning-based methods, which still need to annotate part
of the dataset carefully. Weakly supervised learning just requires a few
sparse annotations to learn and achieve promising results (Lin et al.,
2016; Valvano et al., 2021). Fig. 6 shows an example of different types
of medical image annotation. Table 10 lists the percentage of labeled
voxels of scribble annotation compared with dense annotation. It shows
that sparse annotation can be used to produce coarse segmentation
results with very few labeling cost. In this work, we evaluate several
weakly-supervised methods on the abdominal multi-organ segmenta-
tion task for the first time and further propose a new method to boost
the results.

4.4.1. Learning from scribbles
To learn from scribble annotations, the general method is using

the partially Cross-Entropy (pCE) loss to train deep networks, where
just labeled pixels are considered to calculate the gradient and the
other pixels are ignored (Tang et al., 2018a). However, due to the
sparse supervision, the pCE loss cannot achieve promising results. To
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solve this dilemma, Tang et al. (2018b) proposed to integrate the pCE
loss and MRF/CRF regularization terms to train deep networks with
scribble annotations. After that, most of the recent weakly-supervised
methods trained deep networks by using the following joint objective
function (Valvano et al., 2021; Zhang et al., 2020):

𝑡𝑜𝑡𝑎𝑙 = 𝑝𝐶𝐸 + 𝜆1𝐶𝑅𝐹 + 𝜆2𝑜𝑡ℎ𝑒𝑟 (1)

where 𝑜𝑡ℎ𝑒𝑟 means other loss functions presented in these works. 𝜆1
and 𝜆2 denote the weight factor of these loss functions. These methods
have achieved encouraging results in natural image segmentation (Tang
et al., 2018a,b) and salience object detection (Zhang et al., 2020; Yu
et al., 2021), etc. But for abdominal multi-organ segmentation, learning
from scribbles is also a very challenging task. Different from the above,
we propose a new regularization term to train deep networks for weakly
supervised abdominal multi-organ segmentation.

4.4.2. Entropy minimization
Recently, entropy minimization has been widely used in semi-

supervised learning to utilize the unlabeled data (Grandvalet et al.,
2005; Hang et al., 2020; Vu et al., 2019). It encourages the model to
produce high confidence prediction by minimizing the following object
function:

𝑒𝑛𝑡 =
∑

𝑐

∑

𝑖
−𝑝𝑖𝑐 ⋅ log 𝑝

𝑖
𝑐 (2)

where 𝑝𝑖𝑐 means the probability value of the pixel 𝑖 belonging to the 𝑐
class. In this work, we further use entropy minimization to regularize
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Table 13
Comparison between various weakly-supervised segmentation methods in the term of 𝐻𝐷95 (mm), all methods based on the same backbone
(2D ResUNet) and same experiment settings. HF: Head of femur.

Method pCE pCE+CRF Loss pCE+EM pCE+IVM pCE+EM+IVM Mask

Liver 7.84 ± 9.30 29.48 ± 7.07 16.13 ± 16.49 17.85 ± 18.14 9.47 ± 2.44 4.64 ± 7.37
Spleen 9.35 ± 9.29 25.20 ± 40.37 20.78 ± 39.72 10.26 ± 11.13 8.33 ± 9.55 8.70 ± 30.11
Kidney (L) 39.23 ± 110.58 13.79 ± 27.90 19.70 ± 29.74 7.37 ± 14.57 7.61 ± 17.25 5.4 ± 15.85
Kidney (R) 31.68 ± 45.25 9.41 ± 20.34 58.63 ± 151.23 12.06 ± 24.16 8.39 ± 22.65 2.47 ± 0.97
Stomach 13.43 ± 8.69 14.43 ± 10.76 19.83 ± 21.43 12.92 ± 7.78 12.60 ± 7.05 9.98 ± 6.62
Gallbladder 31.28 ± 27.84 11.29 ± 11.26 47.52 ± 128.15 32.57 ± 25.49 15.04 ± 12.79 9.48 ± 12.97
Esophagus 24.9 ± 10.02 12.69 ± 9.13 20.61 ± 9.16 15.13 ± 9.09 12.51 ± 9.23 6.70 ± 7.60
Pancreas 11.94 ± 10.91 10.26 ± 8.96 13.43 ± 9.30 12.58 ± 10.64 10.50 ± 8.13 7.82 ± 7.15
Duodenum 36.36 ± 17.15 22.34 ± 12.66 22.64 ± 12.18 25.33 ± 17.05 22.25 ± 11.43 21.79 ± 12.83
Colon 27.03 ± 14.03 18.04 ± 12.63 25.11 ± 14.69 23.85 ± 14.02 18.55 ± 13.77 17.41 ± 15.22
Intestine 18.47 ± 8.77 17.60 ± 5.58 19.28 ± 11.33 19.77 ± 7.64 12.02 ± 5.56 9.54 ± 7.20
Adrenal 23.60 ± 10.32 13.02 ± 6.93 24.93 ± 10.32 20.86 ± 9.45 14.64 ± 7.15 6.67 ± 4.59
Rectum 11.99 ± 5.59 22.37 ± 10.43 21.20 ± 12.32 14.42 ± 9.07 12.59 ± 6.08 10.62 ± 6.52
Bladder 21.94 ± 26.26 6.71 ± 5.86 17.13 ± 24.9 13.12 ± 8.59 17.58 ± 9.99 5.02 ± 6.17
HF (L) 72.85 ± 99.82 20.97 ± 58.39 34.85 ± 95.43 33.34 ± 95.46 20.05 ± 60.58 6.56 ± 8.30
HF (R) 51.87 ± 93.12 20.58 ± 59.50 33.44 ± 94.53 33.08 ± 94.72 19.20 ± 58.89 5.98 ± 7.20

Mean 27.11 ± 34.90 16.76 ± 17.41 25.95 ± 45.48 19.03 ± 27.55 13.83 ± 17.03 8.6 ± 6.47
Table 14
Sensitivities to scribble thickness evaluated on the WORD dataset testing set. The dilated scribbles are
simulated from the origin scribbles, expanding their thickness by dilating with different kernels. Here, we
reported the mean results of 16 organs in terms of 𝐷𝑆𝐶 and 𝐻𝐷95.

Method (with n × n dilation kernel) 𝐷𝑆𝐶 (%) 𝐻𝐷95 (mm)

pCE (None) 72.06 ± 19.78 27.11 ± 34.90
pCE+EM+IVM (None) 76.81 ± 16.01 13.83 ± 17.03

pCE (3 × 3) 74.23 ± 18.49 23.93 ± 18.65
pCE+EM+IVM (3 × 3) 78.32 ± 14.57 12.57 ± 16.09

pCE (5 × 5) 75.93 ± 19.35 19.48 ± 21.03
pCE+EM+IVM (5 × 5) 79.68 ± 15.56 12.74 ± 13.37

pCE (7 × 7) 77.86 ± 16.48 15.62 ± 18.19
pCE+EM+IVM (7 × 7) 80.71 ± 12.26 12.96 ± 12.83
the deep network for learning from scribble annotations. Our intuition
is that the entropy minimization is more like pixel-wise contrastive
learning to encourage the model to learn from unlabeled pixels by min–
max the intra/inter-class discrepancy. As the softmax prediction has
maximized the difference of inter-class and the entropy minimization
term enforces the intra-class prediction to be confident.

4.4.3. Intra-class intensity variance minimization
Although the entropy minimization loss has regularized the deep

network at the output level, it does not consider the image-level infor-
mation. We hypothesize that the intensity information could bring more
useful information and further boost model performance. Here, we
attempt to reformate an unsupervised regularization term to consider
both prediction and intensity simultaneously. Inspired by the clustering
learning (Jain and Dubes, 1988) and active contour model (Chan and
Vese, 2001), we propose to regularize the deep network by minimizing
the intra-class intensity variance, where the mathematical formulation
is defined as:

𝑖𝑣𝑚 = ∫ (𝑝𝑖𝑐 ⋅ 𝐼
𝑖 − 𝑢𝑐 )2𝑑𝑖𝑑𝑐 (3)

where

𝑢𝑐 =
∫ (𝐼 𝑖 ⋅ 𝑝𝑖𝑐 )𝑑𝑖

∫ 𝑝𝑖𝑐𝑑𝑖
(4)

where 𝐼 𝑖 denotes the intensity value of the input image at pixel 𝑖. 𝑐
is the class number. Based on the above descriptions, the 𝑖𝑣𝑚 can be
converted to the intra-class intensity standard deviation minimization
term (std).
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4.4.4. The overall objective function
In this work, we employ a joint objective function to train model

from the scribble annotations, which consists of three terms: partially
cross-entropy loss, entropy minimization loss and intensity variance
minimization loss and takes the following combination:

𝑡𝑜𝑡𝑎𝑙 = 𝑝𝐶𝐸 + 𝜆𝑒𝑛𝑡𝑒𝑛𝑡 + 𝜆𝑖𝑣𝑚𝑖𝑣𝑚 (5)

where 𝜆𝑒𝑛𝑡 and 𝜆𝑖𝑣𝑚 represent the importance of 𝑒𝑛𝑡 and 𝑖𝑣𝑚 respec-
tively and both are set to 0.1 in this work.

4.4.5. Experiments and results
Experiments settings: To evaluate the proposed method, we further

provide scribble annotations for the WORD. We generate scribbles for
all training volumes in the axial view. Note that the scribble annota-
tions are very sparse in both intra-/inter-slices, which means that not
all slices have the scribbles but each organ is annotated at least once in
a volume. Due to the scribble annotations based abdominal multi-organ
segmentation is not a hot research topic, there is no existing work or
openly available codebase. We first build a benchmark for this task and
then compare a widely-used method, CRFLoss (Tang et al., 2018b) on
the WORD. We use the ResUNet (2D) (Diakogiannis et al., 2020) as our
backbone and employ the nnUNet (Isensee et al., 2021) pipeline to train
and test all methods. All implementations and scribbles are released.

Results: The quantitative comparisons between our proposed
method and the others are presented in Tables 11 and 13. The first
interesting observation is that the widely-used CRF Loss (Tang et al.,
2018b) achieves a worst performance than all other methods. The
reason may be that the CRF Loss (Tang et al., 2018b) is specifically
designed for natural image segmentation tasks and is not suitable for
handling CT images with low contrast and non-enhancement. Then,
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Table 15
Segmentation results of existing methods for small abdominal organs segmentation in CT scan (gallbladder, esophagus, pancreas, duodenum,
adrenal, rectum). Tr and Ts represent the total cases of the training set and testing set, respectively. Open denotes the data is open available.

Method Open Tr/Ts Gallbladder Esophagus Pancreas Duodenum Adrenal Rectum

Oliveira et al. (2018) Yes 20/10 51.8 – 57.2 – – –
Wang et al. (2019) No 236a 90.5 – 87.8 75.4 – –
Tang et al. (2021) Yes 30/20 82.6 78.8 76.1 – 73.6 –
Liang et al. (2021) Yes 90b 78 74 81 71 – –
Chen et al. (2021b) No 150/20 87 76 84 77 – 80

Ours Yes 120/50 83.2 78.5 85.0 68.3 72.4 82.4
aMean four-fold cross-validation.
bMean nine-fold cross-validation.
we found that the network can leverage the scribble annotation more
efficiently by encouraging to produce more confident predictions.
Moreover, compared with the entropy minimization term, our proposed
intra-class intensity variance minimization achieves better results, the
mean 𝐷𝑆𝐶 of 73.90% 𝑣𝑠. 74.99%. In addition, by combining the
entropy minimization and intra-class intensity variance minimization,
the model achieves the best performance of the others and improves
the mean 𝐷𝑆𝐶 from 72.06% to 76.81%. These results demonstrate
that also most weakly supervised methods achieve better results than
those using partially cross-entropy loss, except for the CRF Loss. It is
noteworthy to mention that scribble annotations save more than 96%
of labeling cost than dense annotations. In addition, we find large size
organs weakly supervised segmentation results are very close to fully
supervised, especially in the femur’s liver, spleen, kidney, stomach, and
head. However, the small size organs still cannot be segmented well, it
also points out the research direction. Moreover, we further investigate
the network performance when increasing the scribble thickness in
Table 14, where we increase the thickness by dilating original scribbles
with 3 × 3, 5 × 5, and 7 × 7 kernels in the axial view. It shows
that the proposed method has a higher performance when increasing
the scribble thickness, suggesting that the proposed can benefit from
the increased scribble thickness. The above results show that weakly-
supervised learning may further reduce the labeling cost with further
research.

5. Discussion and conclusion

In this work, we collect and build a large-scale whole abdominal
CT multi-organ segmentation dataset containing 150 CT volumes and
16 organ annotations. Although, many abdominal organ segmentation
datasets and benchmarks have been established, like AbdomenCT-
1K (Ma et al., 2021), BTCV (Landman et al., 2017), TCIA (Roth
et al., 2015), LiTS (Bilic et al., 2019), CT-ORG (Rister et al., 2020),
KiTS (Heller et al., 2020), etc, our WORD dataset cover the whole
abdominal region and also annotate more organs. Then we annotate 20
scans from the open available (Bilic et al., 2019) for clinical applicable
and generalizable evaluation. Here, we investigate several hot topics
based on the WORD dataset and point out some unsolved or challenging
problems.

5.1. Clinical applicable investigation

We investigate several SOTA methods on the WORD dataset and
find that all methods can achieve encouraging results. Then, we com-
prehensively study the clinical acceptance of the deep network. Fig. 3
shows three junior clinical oncologists revise the results. For large-
scale organs, such as the liver, spleen, kidney, stomach, bladder, and
head of the femur, the deep network can perform very closely to
junior oncologists, which means the model prediction can be clinically
acceptable after minor revision. However, there are huge performance
gaps between junior oncologists and the deep network on small organs,
such as the gallbladder, esophagus, pancreas, duodenum, adrenal, and
rectum, suggesting that directly applying the model predictions to the
11
clinical application is tough without oncologists revision. Moreover,
we further investigate the segmentation results of existing methods for
these challenging and small organs. Quantitative results are listed in
Table 15. It is worth pointing out that the comparisons are unfair, as
the dataset and experimental settings for each method are different. It
can be found that the results in WORD dataset are more comprehensive
and competitive than those in recent works (Oliveira et al., 2018;
Wang et al., 2019; Tang et al., 2021; Liang et al., 2021; Chen et al.,
2021b), but it is still not good enough for clinical application. So,
we think the abdominal multi-organ segmentation task is not a well-
solved problem. And the WORD dataset not only can provide a fair
benchmark for performance comparison but also help researchers focus
on handling these challenging organ segmentation to improve clinical
practice performance.

5.2. Model generalization

Recently, domain adaptation and generalization have been scorch-
ing topics in the natural/medical image segmentation fields (Dou et al.,
2018; Vu et al., 2019). But for the abdominal multi-organ segmen-
tation task, there are very few studies (Dou et al., 2020) focused on
investigating the generalization problem. This is mainly due to lacking
open available multi-sources and large-scale datasets/benchmarks. In
this work, we investigate the domain gaps between our build WORD
dataset and open-source datasets BTCV (Landman et al., 2017) and
TCIA (Roth et al., 2015) and find that there are significant domain gaps
across different source datasets. Furthermore, we annotated 20 volumes
from LiTS (Bilic et al., 2019) as an external evaluation set to validate
networks’ generalizability and found that the domain gap between LiTS
and WORD dataset is not significant. It is desirable to train models
with good generalization and high-performance to boost deep learning-
based clinical application. So, we build a benchmark for robust and
generalizable abdominal multi-organ segmentation research.

5.3. Annotation-efficient segmentation

Developing an encouraging performance segmentation model al-
ways requires many high-quality annotations, but labeling the ab-
dominal multi-organ is very expensive and time-consuming, each vol-
ume around takes 1.2–2.6 h. To reduce the labeling cost, annotation-
efficient learning has attracted many researchers’ attention, such as
semi-supervised learning (Luo et al., 2021a,b; Luo, 2020; Luo et al.,
2022c; You et al., 2021, 2022c, 2020, 2022d,a,b) and weakly super-
vised learning (Valvano et al., 2021; Luo et al., 2022a). In this work,
we propose to learn from the scribble annotation by minimizing the
entropy minimization and intra-class intensity variance minimization.
Although our proposed method improves the baseline by a large mar-
gin, there is also a considerable performance gap compared with dense
annotations. In this work, we want to do some attempts to inspire
annotation-efficient research in the future.

In conclusion, we introduced a new carefully annotated whole ab-
dominal organ CT dataset. Meanwhile, we investigate several existing
SOTA methods and perform user study on this dataset, and further point
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out some unsolved problems and potential directions in both technique
and clinical views. In the future, we will still work on extending the
WORD dataset to be more extensive and more diverse.
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