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Abstract. Medical image segmentation plays an irreplaceable role in computer-
assisted diagnosis, treatment planning and following-up. Collecting and annotat-
ing a large-scale dataset is crucial to training a powerful segmentation model, but
producing high-quality segmentation masks is an expensive and time-consuming
procedure. Recently, weakly-supervised learning that uses sparse annotations
(points, scribbles, bounding boxes) for network training has achieved encourag-
ing performance and shown the potential for annotation cost reduction. However,
due to the limited supervision signal of sparse annotations, it is still challenging
to employ them for networks training directly. In this work, we propose a simple
yet efficient scribble-supervised image segmentation method and apply it to car-
diac MRI segmentation. Specifically, we employ a dual-branch network with one
encoder and two slightly different decoders for image segmentation and dynam-
ically mix the two decoders’ predictions to generate pseudo labels for auxiliary
supervision. By combining the scribble supervision and auxiliary pseudo labels
supervision, the dual-branch network can efficiently learn from scribble annota-
tions end-to-end. Experiments on the public ACDC dataset show that our method
performs better than current scribble-supervised segmentation methods and also
outperforms several semi-supervised segmentation methods. Code is available:
https://github.com/HiLab-git/WSL4MIS.
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1 Introduction

Recently, Convolutional Neural Networks (CNNs) and Transformers have achieved
encouraging results in automatic medical image segmentation [5,12,26]. Most of them
need large-scale images with accurate pixel-level dense annotations to train models.
However, collecting a large-scale and carefully annotated medical image dataset is still
an expensive and time-consuming journey, as it requires domain knowledge and clinical
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Fig. 1. Examples of dense and scribble annotations. BG, RV, Myo, LV, and UA represent the
background, right ventricle, myocardium, left ventricle, and unannotated pixels respectively.

experience [19,22]. Recently, many efforts have beenmade to reduce the annotation cost
for models training to alleviate this issue. For example, semi-supervised learning (SSL)
combines a few labeled data and massive unlabeled data for network training [1,19–21].
Weakly supervised learning (WSL) uses sparse annotations to train models rather than
dense annotations [7,8,30]. Considering collecting sparse annotations (points, scribbles
and bounding boxes) is easier than dense annotations [16] and scribbles have better gen-
erality to annotate complex objects than bounding boxes and points [16,30] (Example in
Fig. 1). This work focuses on exploring scribble annotations to train high-performance
medical image segmentation networks efficiently and robustly.

Scribble-Supervised Segmentation: Using scribble annotations to segment objects has
been studied for many years. Before the deep learning era, combining user-provided
sparse annotations and machine learning or other algorithms was the most popular and
general segmentationmethod, such asGraphCuts [3], GrabCut [27], RandomWalker [9],
GrowCut [31], ITK-SNAP [37], Slic-Seg [33], etc. Recently, deep learningwith convolu-
tional neural networks or transformers can learn to segment from dense annotations and
then inference automatically. So, it is desirable to train powerful segmentation networks
using scribble annotations. To achieve this goal, Lin et al. [16] proposed a graphical-
based method to propagate information from scribbles to unannotated pixels and train
models jointly. After that, Tang et al. [28] introduced a Conditional Random Field (CRF)
regularization loss to train segmentation networks directly. For medical images, Can
et al. [4] proposed an iterative framework to train models with scribbles. At first, they
seeded the scribbles into the Random Walker [9] to produce the initial segmentation.
Then, they used the initial segmentation to train the model and refine the model’s pre-
diction with CRF for the network retraining. Finally, they repeated the second procedure
several times for powerful segmentation models. Kim et al. [13] proposed a level set-
based [23] regularization function to train deep networks with weak annotations. Lee
et al. [15] combined pseudo-labeling and label filtering to generate reliable labels for
network training with scribble supervisions. Liu et al. [17] presented a unified weakly-
supervised framework to train networks from scribble annotations, which consists of an
uncertainty-aware mean teacher and a transformation-consistent strategy.More recently,
Valvano et al. [30] proposed multi-scale adversarial attention gates to train models
with mixed scribble and dense annotations. Although these attempts have saved the
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annotation cost by using scribble annotations, the performance is still lower than training
with dense annotations, limiting the applicability in clinical practice.

Pseudo Labels for Segmentation: Pseudo labeling [14] is widely used to generate
supervision signals for unlabeled images/pixels. The main idea is utilizing imper-
fect annotations to produce high-quality and reliable pseudo labels for network train-
ing [6,34]. Recently, some works have demonstrated [18,34,35] that semi-supervised
learning can benefit from high-quality pseudo labels. For weakly-supervised learning,
Lee et al. [15] showed that generating pseudo labels by ensembling predictions at a
temporal level can boost performance. Nevertheless, recent work [11] points out the
inherent weakness of these methods that the model retains the prediction from itself and
thus resists updates. Recently, some works resort to perturbation-consistency strategy
for semi-supervised learning [24,35], where the main branch is assisted by auxiliary
branches that are typically perturbed and encouraged to produce similar predictions to
the main branch. In this work, we assume that generating pseudo labels by mixing multi-
ple predictions randomly can go against the above inherent weakness, as these auxiliary
branches are added perturbations and do not enable interaction with each other.

Motivated by these observations, we present a simple yet efficient approach to learn-
ing from scribble annotations. Particularly, we employ a dual branches network (one
encoder and two slightly different decoders) as the segmentation network. To learn
from scribbles, the dual branches network is supervised by the partially cross-entropy
loss (pCE), which only considers annotated pixels’ gradient for back-propagation and
ignores unlabeled pixels. At the same time, we employ the two predictions to gener-
ate hard pseudo labels for more substantial and more reliable supervision signals than
scribbles. Afterward, we combine scribbles supervision and pseudo labels supervision
to train the segmentation network end-to-end. Differently from threshold-based meth-
ods [15,35], we generate hard pseudo labels by dynamically mixing two branches’ pre-
dictions, which can help against the inherent weakness [11]. Such a strategy imposes
the segmentation network to produce high-quality pseudo labels for unannotated pixels.
We evaluate our method on a public scribble-supervised benchmark ACDC [2]. Exper-
iments results show that our proposed method outperforms existing scribble-supervised
methods when using the same scribble annotations and also performs better than semi-
supervised methods when taking similar annotation budgets.

The contributions of this work are two-fold. Firstly, we propose a dual-branch net-
work and a dynamically mixed pseudo labeling strategy to train segmentation mod-
els with scribble annotations. Specifically, we generate high-quality hard pseudo labels
by randomly mixing the two branches’ outputs and use the generated pseudo labels
to supervise the network training end-to-end. (2) Extensive experiments on the public
cardiac MRI segmentation dataset (ACDC) demonstrate the effectiveness of the pro-
posed method. Our method has achieved better performance on the ACDC dataset than
existing scribble-supervised segmentation approaches and also outperformed several
semi-supervised segmentation methods with similar annotation costs.

2 Method

The proposed framework for scribble-supervised medical image segmentation is
depicted in Fig. 2. We firstly employ a network with one encoder and two slightly
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Fig. 2. Overview of the proposed method. The framework consists of an encoder (θe), the main
decoder (θd1), and an auxiliary decoder (θd2) and is trained with scribble annotations separately
(LpCE). At the same time, the hard pseudo label is generated by dynamically mixing two decoders’
outputs and used as the pseudo labels supervision for further network training (LPLS ).

different decoders to learn from scribble annotations to segment target objects. At the
same time, we utilize the two branches’ outputs to generate hard pseudo labels that are
used to assist the network training. Note that the training procedure is in an end-to-end
manner rather than the multi-stage [4] or iterative refinement strategies [16].

2.1 Learning from Scribbles

For general scribble-supervised learning, the available dataset consists of images and
scribble annotations, where the scribble is a set of pixels with a category or unknown
label. Previous work [4] uses interactive segmentation methods [9] to propagate anno-
tated pixels to the whole image for a rough segmentation and then train deep networks
with the segmentation in a fully-supervised manner. Recently, there are much better
alternatives [15,28], e.g., using scribbles to train CNNs directly by minimizing a partial
cross-entropy loss:

LpCE(y, s) = −
∑

c

∑

i∈ωs

log yci (1)

where s represents the one-hot scribble annotations. yci is the predicted probability of
pixel i belonging class c. ωs is the set of labeled pixels in s.

2.2 Dual-Branch Network

The proposed network ( f (θe, θd1, θd2)) is composed of a shared encoder (θe) for feature
extraction and two independent and different decoders (θd1, θd2) for segmentation and
supplementary training (see Fig. 2). We embed a perturbed decoder into the general
UNet [26], where the dropout [24] is used to introduce perturbation at the feature level.
This design has two advantages: (1) It can be against the inherent weakness of pseudo-
label in the single branch network [11], as the two branches’ outputs are different due to
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the feature perturbation. (2) It can generate pseudo-label by two outputs ensemble but
does not require training two networks, and the encoder benefits from the two individual
supervisions to boost the feature extraction ability [24,35]. It is worthy to point out that
some recent works used similar architecture for the consistency training [19,24,35] or
knowledge distillation [7]. There are many significant differences in the learning sce-
narios and supervision strategies. Firstly, [19,24,35] concentrate on semi-supervised
learning and [7] focus on knowledge distillation but we aim to scribble-supervised seg-
mentation. Secondly, they employ consistency regularization to supervise networks, but
we randomly mix two outputs to generate hard pseudo labels for fully supervised learn-
ing. These differences lead to different training, optimization strategies, and results.

2.3 Dynamically Mixed Pseudo Labels

Based on the dual-branch network, we further exploit the two decoders’ outputs to
boost the model training. We generate the hard pseudo labels by mixing two predictions
dynamically, like mixup [38]. The dynamically mixed pseudo labels (PL) generation
strategy is defined as:

PL = argmax[α × y1 + (1.0 − α) × y2], α = random(0, 1) (2)

where y1 and y2 are outputs of decoder 1 and 2, respectively. α is randomly generated
in (0, 1) at each iteration. This strategy boosts the diversity of pseudo labels and avoids
the inherent weakness of the pseudo labeling strategy (remembering itself predictions
without updating) [11]. argmax is used to generate hard pseudo labels. Compared with
consistency learning [24,35], this strategy cuts off the gradient between θd1 and θd2 to
maintain their independence rather than enforce consistency directly. In this way, the
supervision signal is enlarged from a few pixels to the whole image, as the scribbled
pixels are propagated to all unlabeled pixels by the dynamically mixed pseudo labeling.
Then, we further employ the generated PL to supervise θd1 and θd2 separately to assist
the network training. The Pseudo Labels Supervision (PLS) is defined as:

LPLS (PL, y1, y2) = 0.5 × (LDice(PL, y1) + LDice(PL, y2)) (3)

where LDice is the widely-used dice loss and also can be replaced by cross-entropy loss
or other segmentation loss functions. Finally, the proposed network can be trained with
scribble annotations by minimizing the following joint object function:

Ltotal = 0.5 × (LpCE(y1, s) + LpCE(y2, s))︸������������������������������������︷︷������������������������������������︸
scribble supervision

+λ × LPLS (PL, y1, y2)︸��������������︷︷��������������︸
pseudo labels supervision

(4)

λ is a weight factor to balance the supervision of scribbles and pseudo labels.

3 Experiment and Results

3.1 Experimental Details

Dataset: We evaluate the proposed method on the training set of ACDC [2] via five-
fold cross-validation. This dataset is publicly available, with 200 short-axis cine-MRI
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Table 1. Comparison with existing weakly-/semi-supervised methods on the ACDC dataset. All
results are based on the 5-fold cross-validation with same backbone (UNet). Mean and standard
variance (in parentheses) values of 3D DSC and HD95 (mm) are presented in this table. ∗ denotes
p-value < 0.05 (paired t-test) when comparing with the second place method (RLoss [28]).

Type Method RV Myo LV Mean

DSC HD95 DSC HD95 DSC HD95 DSC HD95

WSL pCE [16] 0.625(0.16) 187.2(35.2) 0.668(0.095) 165.1(34.4) 0.766(0.156) 167.7(55.0) 0.686(0.137) 173.3(41.5)

RW [9] 0.813(0.113) 11.1(17.3) 0.708(0.066) 9.8(8.9) 0.844(0.091) 9.2(13.0) 0.788(0.09) 10.0(13.1)

USTM [17] 0.815(0.115) 54.7(65.7) 0.756(0.081) 112.2(54.1) 0.785(0.162) 139.6(57.7) 0.786(0.119) 102.2(59.2)

S2L [15] 0.833(0.103) 14.6(30.9) 0.806(0.069) 37.1(49.4) 0.856(0.121) 65.2(65.1) 0.832(0.098) 38.9(48.5)

MLoss [13] 0.809(0.093) 17.1(30.8) 0.832(0.055) 28.2(43.2) 0.876(0.093) 37.9(59.6) 0.839(0.080) 27.7(44.5)

EM [10] 0.839(0.108) 25.7(44.5) 0.812(0.062) 47.4(50.6) 0.887(0.099) 43.8(57.6) 0.846(0.089) 39.0(50.9)

RLoss [28] 0.856(0.101) 7.9(12.6) 0.817(0.054) 6.0(6.9) 0.896(0.086) 7.0(13.5) 0.856(0.080) 6.9(11.0)

Ours 0.861(0.096) 7.9(12.5) 0.842(0.054)* 9.7(23.2) 0.913(0.082)* 12.1(27.2) 0.872(0.077)* 9.9(21.0)

SSL PS [26] 0.659(0.261) 26.8(30.4) 0.724(0.176) 16.0(21.6) 0.790(0.205) 24.5(30.4) 0.724(0.214) 22.5(27.5)

DAN [39] 0.639(0.26) 20.6(21.4) 0.764(0.144) 9.4(12.4) 0.825(0.186) 15.9(20.8) 0.743(0.197) 15.3(18.2)

AdvEnt [32] 0.615(0.296) 20.2(19.4) 0.760(0.151) 8.5(8.3) 0.848(0.159) 11.7(18.1) 0.741(0.202) 13.5(15.3)

MT [29] 0.653(0.271) 18.6(22.0) 0.785(0.118) 11.4(17.0) 0.846(0.153) 19.0(26.7) 0.761(0.180) 16.3(21.9)

UAMT [36] 0.660(0.267) 22.3(22.9) 0.773(0.129) 10.3(14.8) 0.847(0.157) 17.1(23.9) 0.760(0.185) 16.6(20.5)

FSL FullSup [26] 0.882(0.095) 6.9(10.8) 0.883(0.042) 5.9(15.2) 0.930(0.074) 8.1(20.9) 0.898(0.070) 7.0(15.6)

scans from 100 patients, and each patient has two annotated end-diastolic (ED), and
end-systolic (ES) phases scans. And each scan has three structures’ dense annotation,
including the right ventricle (RV), myocardium (Myo), and left ventricle (LV). Recently,
Valvano et al. [30] provided the scribble annotation for each scan manually. Following
previous works [1,30], we employ the 2D slice segmentation rather than 3D volume
segmentation, as the thickness is too large.

Implementation Details: We employed the UNet [26] as the base segmentation net-
work architecture, and we further extended the basic UNet to dual branches network by
embedding an auxiliary decoder. We added the dropout layer (ratio= 0.5) before each
conv-block of the auxiliary decoder to introduce perturbations. We implemented and ran
our proposed and other comparison methods by PyTorch [25] on a cluster with 8 TiTAN
1080TI GPUs. For the network training, we first re-scaled the intensity of each slice to
0–1. Then, random rotation, random flipping, random noise were used to enlarge the
training set, and the augmented image was resized to 256 × 256 as the network input.
We used the SGD (weight decay = 10−4, momentum = 0.9) to minimize the joint object
function Eq. 4 for the model optimization. The poly learning rate strategy was used to
adjust the learning rate online [20]. The batch size, total iterations, and λ are set to
12, 60k, and 0.5, respectively. For testing, we produced predictions slice by slice and
stacked them into a 3D volume. For a fair comparison, we used the primary decoder’s
output as the final result during the inference stage and did not use any post-processing
method. All experiments were conducted in the same experimental setting. The 3D Dice
Coefficient (DSC) and 95% Hausdorff Distance (HD95) are used as evaluation metrics.
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Table 2. Ablation study on different supervision strategies for the dual-branch network. Single
denotes the baseline UNet [26] with pCE only. CR means consistency regularization between the
main and auxiliary decoders [7]. CPS is the cross pseudo supervision strategy in [6,35]. Ours is
proposed PLS, θd1 and θd2 mean the prediction of main and auxiliary decoders, respectively.

Method RV Myo LV Mean

DSC HD95 DSC HD95 DSC HD95 DSC HD95

Single [16] 0.625(0.16) 187.2(35.2) 0.668(0.095) 165.1(34.4) 0.766(0.156) 167.7(55.0) 0.686(0.137) 173.3(41.5)

Dual+CR [7] 0.844(0.106) 20.1(37.2) 0.798(0.07) 62.2(55.7) 0.873(0.101) 63.4(65.5) 0.838(0.092) 48.6(52.8)

Dual+CPS [6,35] 0.849(0.099) 12.4(25.6) 0.833(0.056) 19.3(33.5) 0.905(0.091) 18.3(35.8) 0.863(0.082) 16.6(31.6)

Ours (α=0.5, θd1) 0.855(0.101) 8.6(13.9) 0.837(0.053) 13.6(29.1) 0.908(0.086) 15.8(34.1) 0.866(0.08) 12.6(25.7)

Ours (α=random, θd1) 0.861(0.096) 7.9(12.5) 0.842(0.054) 9.7(23.2) 0.913(0.082) 12.1(27.2) 0.872(0.077) 9.9(21.0)

Ours (α=random, θd2) 0.861(0.098) 7.3(10.3) 0.840(0.058) 10.9(24.5) 0.911(0.086) 11.3(26.4) 0.871(0.08) 9.8(20.4)

3.2 Results

Comparison with Other Methods: Firstly, we compared our method with seven
scribble-supervised segmentation methods with the same set of scribbles: 1) pCE
only [16] (lower bound), 2) using pxeudo label generated by Random Walker
(RW) [9], 3) Uncertainty-aware Self-ensembling and Transformation-consistent Model
(USTM) [17], 4) Scribble2Label (S2L) [15], 5) Mumford-shah Loss (MLoss) [13], 6)
Entropy Minimization (EM) [10], 7) Regularized Loss (RLoss) [28]. The first section
of Table 1 lists the quantitative comparison of the proposed with seven existing weakly
supervised learning methods. It can be found that our method achieved the best perfor-
mance in terms of mean DSC (p-value < 0.05) and second place in the HD95 metric
than other methods.

Afterward, we further compared our method with other popular annotation-efficient
segmentation methods, e.g., semi-supervised learning methods. Following [8], we
investigated the performance difference of these approaches when using very similar
annotation costs. To do so, we trained networks with partially supervised and semi-
supervised fashions, respectively. We used a 10% training set (8 patients) as labeled
data and the remaining as unlabeled data, as the scribble annotation also takes sim-
ilar annotation costs [30]. For partially supervised (PS) learning, we used the 10%
labeled data to train networks only. For semi-supervised learning, we combined the 10%
labeled data and 90% unlabeled data to train models jointly. We further employed four
widely-used semi-supervised segmentation methods for comparison: 1) Deep Adver-
sarial Network (DAN) [39], 2) Adversarial Entropy Minimization (AdvEnt) [32], 3)
Mean Teacher (MT) [29], and Uncertainty Aware Mean Teacher (UAMT) [36]. The
quantitative comparison is presented in the second section of Table 1. It shows that the
scribbled annotation can achieve better results than pixel-wise annotation when taking a
similar annotation budget. Moreover, our weakly-supervised method significantly out-
performs existing semi-supervised methods in the cardiac MR segmentation. Finally,
we also investigated the upper bound when using all mask annotation to train models
(FullSup) in the last row of Table 1. It can be found that our method is slightly inferior
compared with fully supervised learning with pixel-wise annotation. But our method
requires fewer annotation costs than pixel-wise annotation. Figure 3 shows the segmen-
tation results obtained by existing and our methods, and the corresponding ground truth
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Fig. 3. Qualitative comparison of our proposed method and several existing ways.

Fig. 4. Sensitivity analysis of hyper-parameter λ.

on the ACDC dataset (patient026 frame01). We can observe that the result obtained by
our method is more similar to the ground truth than the others. It further shows that
drawing scribble is a potential data annotation approach to reduce annotation costs.

Sensitivity Analysis of λ: The study was conducted to assess the sensitivity of λ in
Eq. 4. Particularly, the PLS term plays a crucial role in the proposed framework, as
it controls the usage of the pseudo labels during the network training. We investi-
gated the segmentation performance of the proposed framework when the λ is set to
{0.01, 0.1, 0.2, 0.3, 0.5, 1.0}. Figure 4 shows the evolution of the segmentation result of
RV, Myo, LV, and their average results, all these results are based on the 5-fold cross-
validation. It can be observed that increasing λ from 0.01 to 0.5 leads to better perfor-
mance in terms of bothDSC and HD95. When the λ is set to 1.0, the segmentation result
just decreases slightly compared with 0.5 (0.872 vs 0.870 in term of mean DSC). These
observations show that the proposed method is not sensitive to λ.

Ablation Study: We further investigated the effect of using different supervision
approaches for the dual-branch network: 1) Consistency Regularization (CR) [7] that
encourages the two predictions to be similar, directly; 2) Cross Pseudo Supervision
(CPS) [6,35] that uses one decoder’s output as the pseudo label to supervise the other
one; 3) the proposed approach dynamically mixes two outputs to generate hard pseudo



536 X. Luo et al.

labels for two decoders training separately. We trained the dual-branch network with
scribbles and the above supervision strategies. The quantitative evaluation results are
presented in Table 2. It can be observed that compared with CR and CPS, using our
proposed PLS leads to the best performance. Moreover, we also investigated the perfor-
mance when α is set to a fixed value (0.5) and dynamic values. The result demonstrates
the effectiveness of the proposed dynamically mixing strategy. In addition, we found
that the main (θd1) and auxiliary (θd2) decoders achieve very similar results.

4 Conclusion

In this paper, we presented pseudo labels supervision strategy for scribble-supervised
medical image segmentation. A dual-branch network is employed to learn from scribble
annotations in an end-to-end manner. Based on the dual-branch network, a dynamically
mixed pseudo labeling strategy was presented to propagate the scribble annotations to
the whole image and supervise the network training. Experiments on a public cardiac
MR image segmentation dataset (ACDC) demonstrated the effectiveness of the pro-
posed method, where it outperformed seven recent scribble-supervised segmentation
methods using the same scribble annotations and four semi-supervised segmentation
methods with very similar annotation costs. In the future, we will extend and evaluate
the proposed method on other challenging medical image segmentation tasks.
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