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a b s t r a c t 

Automatic and accurate lung nodule detection from 3D Computed Tomography (CT) scans plays a vi- 

tal role in efficient lung cancer screening. Despite the state-of-the-art performance obtained by recent 

anchor-based detectors using Convolutional Neural Networks (CNNs) for this task, they require prede- 

termined anchor parameters such as the size, number, and aspect ratio of anchors, and have limited 

robustness when dealing with lung nodules with a massive variety of sizes. To overcome these prob- 

lems, we propose a 3D sphere representation-based center-points matching detection network (SCPM- 

Net) that is anchor-free and automatically predicts the position, radius, and offset of nodules without 

manual design of nodule/anchor parameters. The SCPM-Net consists of two novel components: sphere 

representation and center points matching. First, to match the nodule annotation in clinical practice, we 

replace the commonly used bounding box with our proposed bounding sphere to represent nodules with 

the centroid, radius, and local offset in 3D space. A compatible sphere-based intersection over-union loss 

function is introduced to train the lung nodule detection network stably and efficiently. Second, we em- 

power the network anchor-free by designing a positive center-points selection and matching (CPM) pro- 

cess, which naturally discards pre-determined anchor boxes. An online hard example mining and re-focal 

loss subsequently enable the CPM process to be more robust, resulting in more accurate point assign- 

ment and mitigation of class imbalance. In addition, to better capture spatial information and 3D context 

for the detection, we propose to fuse multi-level spatial coordinate maps with the feature extractor and 

combine them with 3D squeeze-and-excitation attention modules. Experimental results on the LUNA16 

dataset showed that our proposed SCPM-Net framework achieves superior performance compared with 

existing anchor-based and anchor-free methods for lung nodule detection with the average sensitivity 

at 7 predefined FPs/scan of 89 . 2% . Moreover, our sphere representation is verified to achieve higher 

detection accuracy than the traditional bounding box representation of lung nodules. Code is available 

at: https://github.com/HiLab- git/SCPM- Net . 

© 2021 Published by Elsevier B.V. 
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. Introduction 

Lung cancer is one of the leading life-threatening cancer around 

he world, and the diagnosis at an early stage is crucial for the best 

rognosis ( Siegel et al., 2015 ). As one of the essential computer- 

ided diagnosis technologies, lung nodule detection from medical 
∗ Corresponding author. 
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mages such as Computed Tomography (CT) has been increasingly 

tudied for automatic screening and diagnosis of lung cancer. De- 

ecting pulmonary nodules is very challenging due to the large 

ariation of nodule size, location, and appearance. With the suc- 

ess of Convolutional Neural Networks (CNN) for object detection, 

NN-based algorithms have been widely used for detecting pul- 

onary nodules from CT scans ( Ding et al., 2017; Dou et al., 2017;

ei et al., 2021; Tang et al., 2019; Wang et al., 2020; Zheng et al.,

019; Zhu et al., 2018 ). 

Current automatic CNN-based 2D object detection approaches 

re often based on pre-defined anchors and can be mainly sum- 

https://doi.org/10.1016/j.media.2021.102287
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102287&domain=pdf
https://github.com/HiLab-git/SCPM-Net
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arized into two categories. The first uses a two-stage strategy, 

here the first stage obtains a set of region proposals and the 

econd stage classifies each proposal and regresses the bound- 

ng box of the associated instance of that proposal. For example, 

aster RCNN ( Ren et al., 2015 ) and its variants ( Ding et al., 2017;

ou et al., 2017 ) use a network to obtain the region proposals 

ollowing a feature extractor in the first stage and employ a re- 

ression head and a classification head in the second stage. The 

econd category only uses one stage to achieve a trade-off be- 

ween inference speed and accuracy, like SSD ( Liu et al., 2016 ), 

OLO ( Redmon and Farhadi, 2017 ). Compared with one-stage de- 

ectors, the two-stage detectors use a more complex region pro- 

osal network and achieve better performance but also require 

ore inference time. Although these anchor-based methods such 

s Faster RCNN ( Ren et al., 2015 ), RetinaNet ( Lin et al., 2017 ),

SD ( Liu et al., 2016 ) and YOLO ( Redmon and Farhadi, 2017 ) have

chieved promising results in object detection from 2D natural 

mages, they are faced with several limitations when applied to 

D medical images. First, they typically need a very large set of 

nchor boxes, e.g. more than 100 k in 2D RetinaNet ( Lin et al.,

017 ), resulting in huge computational and memory consumption 

or 3D medical images. Second, the use of anchor boxes introduces 

any hyper-parameters and design choices, including the number, 

ize, and aspect ratio of the anchor boxes. Manual design of these 

yper-parameters is not only time-consuming but also subject to 

uman experience, which may limit the detection performance. It 

as indicated in ( Ding et al., 2017 ) that detection of small objects

s sensitive to the manual design of anchors. Moreover, the de- 

ault anchor configuration is ineffective for detecting lesions with 

 small size and large aspect ratio ( Zlocha et al., 2019 ), let alone

he more complex pulmonary nodules, of which the size can vary 

y as much as ten times. Therefore, a novel detection framework 

or objects in 3D medical images with higher efficiency and less 

anual configuring is highly desirable. 

Recently, anchor-free one-stage detection methods have at- 

racted many researchers’ attention and achieved tremendous suc- 

ess in natural image detection ( Chen et al., 2020; Duan et al., 

019; Tian et al., 2019; Wang et al., 2020; Zhou et al., 2019 ). These

nchor-free detectors use key points (i.e., center points ( Duan et al., 

019 ), corner points and extreme points ( Law and Deng, 2018; 

hou et al., 2019b )) and offset in different directions to represent 

he object. However, they may have limited performance when 

ealing with complex cases. For example, the center point may not 

e inside the target object, and corner/extreme points may be in- 

ufficient to represent objects with irregular shapes. These chal- 

enges limit the performance of detector to predict the target’s lo- 

ation. Meanwhile, there is a lack of existing works on using 3D 

nchor-free detectors to boost the accuracy and efficiency of object 

etection from medical volumetric images. 

Besides, almost all existing objection detection methods aim to 

redict or regress the bounding box location and size directly, be- 

ause all objects are annotated with dense bounding boxes in nat- 

ral images ( Everingham et al., 2010; Lin et al., 2014 ). However, in

linical pulmonary nodule diagnosis, clinicians pay more attention 

o the location and diameter of a nodule ( MacMahon et al., 2017 ).

herefore, a 3D lung nodule is often represented by a sphere by 

pecifying its location and radius ( Setio et al., 2017 ), rather than 

 3D bounding box. Motivated by these observations, we investi- 

ate using sphere (parameterized by the central coordinate and ra- 

ius) to precisely represent lung nodule in 3D space. However, to 

he best of our knowledge, there have been no studies on using 

ounding sphere for 3D nodule representation and detection. 

Based on these observations, we propose a novel 3D Sphere 

epresentation-based Center-Points Matching Network (SCPM-Net) 

or pulmonary nodule detection in 3D CT scans. The SCPM-Net is a 

ne-stage anchor-free detection method, which predicts the prob- 
2 
bility of a pixel i in a coordinate grid being around the center 

f a nodule, and simultaneously regresses the radius and offset 

rom pixel i to the real nodule center. It is worth mentioning that 

ew works focus on 3D anchor-free detection in medical images, 

nd unlike recent anchor-free methods ( Law and Deng, 2018; Duan 

t al., 2019 ) for 2D natural images, we don’t need a key points esti-

ation network to generate a heatmap. Due to the huge variations 

f size, shape, and location of lung nodules, using a single centroid 

o represent the lung nodule may lead to a low sensitivity and fur- 

her limit the potential for clinical application ( Song et al., 2020 ). 

n addition, we proposed a novel center points matching strategy, 

hich uses K points near the centroid to represent a nodule to 

mprove the sensitivity of detectors. Another highlight of our work 

s that we introduce a sphere representation for lung nodules in 

D space, and further derive an effective sphere-based loss func- 

ion ( L SIoU++ ) to train our anchor-free detector. Compared to the 

raditional Intersection-over-Union loss ( Zhou et al., 2019a ) that 

s based on bounding boxes, the L SIoU++ here is closer to clinical 

cene, since a nodule’s geometry structure is similar to a sphere or 

n ellipsoid in most situations. Moreover, our SCPM-Net is a one- 

tage end-to-end network without additional false positive reduc- 

ion module adopted in ( Ding et al., 2017; Dou et al., 2017; Mei 

t al., 2021; Tang et al., 2019 ), so that it has a higher efficiency

nd lower memory cost. 

A preliminary version of this work was published in MIC- 

AI2020 ( Song et al., 2020 ), where we first introduced a center- 

oints-matching-based anchor-free detection network for lung 

odule detection in 3D CT scans. In this extend version, we provide 

ore details of our proposed method and describe this work more 

recisely. Additionally, we introduce a novel sphere representation- 

ased intersection-over-union loss ( L SIoU++ ) and provide more ex- 

eriments to better demonstrate the effectiveness of L SIoU++ for 

ung nodule detection. Meanwhile, we provide a deeper analysis 

nd discussion of this work. Our main contributions are summa- 

ized as follows: 

1) We mitigate the ineffectiveness of current anchor-based de- 

tectors ( Lin et al., 2017; Ren et al., 2015 ) by discarding pre-

determined anchor boxes, as we instead predict a center-point 

map directly via a points matching strategy. To this end, we 

propose an anchor-free center-points matching network named 

as CPM-Net with novel attentive modules ( Hu et al., 2018 ), on- 

line hard example mining ( Shrivastava et al., 2016 ), and re-focal 

loss ( Lin et al., 2017 ). 

2) We present the first attempt to represent the pulmonary nodule 

as a bounding sphere in 3D space. Based on sphere representa- 

tion, we further derive an effective sphere-based intersection- 

over-union loss function ( L SIoU++ ) to train CPM-Net for pul- 

monary nodule detection, where we called it SCPM-Net. 

3) We evaluate our approach on LUNA16 dataset ( Setio et al., 

2017 ), and experimental results showed that the proposed 

SCPM-Net achieved superior performance compared with 

anchor-based and existing anchor-free methods for lung nodule 

detection from 3D CT scans. 

. Related works 

.1. Anchor-free model for object detection 

Object detection is a fundamental task in the computer vision 

ommunity and has been studied for many years ( Zhao et al., 

019 ). In the past few years, many anchor-based frameworks have 

chieved good performance in natural image detection ( Lin et al., 

017; Liu et al., 2016; Redmon and Farhadi, 2017; Ren et al., 2015 ),

ut they are also limited by high computational cost and long in- 

erence time. Differently from these anchor-based detection frame- 
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orks, anchor-free methods do not use predefined anchor boxes 

o predict bounding boxes and have been widely used in natu- 

al image detection tasks to boost inference speed and alleviate 

omputational cost ( Duan et al., 2019; Law and Deng, 2018; Tian 

t al., 2019; Wang et al., 2020; Zhou et al., 2019 ). For example,

ornerNet ( Law and Deng, 2018 ) proposed to use a pair of key 

oints to represent the objects and introduced a corner pooling 

trategy to localize corner points, which reduces the effort s to de- 

ign anchor boxes. After that, many works ( Duan et al., 2019; Tian 

t al., 2019; Wang et al., 2020; Zhou et al., 2019 ) extended the

ey points-based anchor free detection frameworks in different as- 

ects, e.g., Zhou et al., 2019 proposed to use extreme points and 

enter points to locate objects. CenterNet ( Duan et al., 2019 ) used 

riplet of key points and the center pooling strategy to capture 

ore recognizable information from the central regions and corner 

egions. Zhou et al. (2019b) and Wang et al. (2020b) detected ob- 

ects by key-point estimation with regressing the object’s size and 

rientation. Following these methods, Tian et al., 2019 proposed a 

imple yet efficient anchor-free detection approach called “FCOS”

nd proved that a fully convolutional one-stage object detector 

ith centerness can also achieve state-of-the-art performance. In 

his work, we introduce a novel framework based on sphere rep- 

esentation for anchor-free 3D lung nodule detection. The differ- 

nce between this work and existing methods are three-fold: First, 

e represent the lung nodule using the bounding sphere rather 

han the bounding box in the 3D space, which is a clinically 

nowledge-driven method ( Sladoje et al., 2005 ). We further extend 

ur proposed sphere representation to a geometric-aware sphere 

ntersection-over-union loss function to impose more geometric 

onstraints over the network in the training stage. Second, we fur- 

her introduce the squeeze-and-excitation attention and coordinate 

ttention to enhance the network presentation ability. Thirdly, we 

ropose a center points matching strategy to boost the detection 

ensitivity. 

.2. Loss function for object detection 

Many detection methods used L 1 or L 2 distance loss functions 

or bounding box regression ( Zhou et al., 2019a ), but they are 

ensitive to various scales. As a popular evaluation metric, the 

ntersection-over-Union (IoU) has been used to train various de- 

ectors, as it is invariant to the scale ( Zheng et al., 2020; Yu et al.,

016 ). For two bounding boxes B a and B b , the IoU loss ( L IoU ) is de-

ned as: 

 IoU = 1 . 0 − | B 

a ∩ B 

b | 
| B 

a ∪ B 

b | (1) 

fter that, many extensions are proposed to boost the detec- 

or’s performance by adopting the classical L IoU . For example, 

IoU ( Rezatofighi et al., 2019 ) loss was proposed to deal with gra-

ient vanishing in non-overlapping cases. To further improve mod- 

ls’ ability of bounding box regression, DIoU ( Zheng et al., 2020 ) 

oss modified L IoU by bringing in the normalized distance between 

 predicted box and the target box. Another challenge of object 

etection is the class imbalance problem, a common solution for 

his problem is using the weighting factor to balance the impact 

f each class or object. After that, Lin et al., 2017 proposed a sim-

le yet powerful “Focal Loss” to address the class imbalance prob- 

em by automatically weighting a class based on its hardness. All 

f these losses have achieved promising performance in 2D nature 

mage detection tasks. Meanwhile, L IoU and “Focal Loss” are also 

idely-used in 3D medical image analysis as powerful and efficient 

oss functions to train 3D detectors ( Li et al., 2019; Mei et al., 2021;

ang et al., 2019; Wang et al., 2020 ). 
3 
.3. 3D Pulmonary nodule detection 

Pulmonary nodule detection plays an essential role in lung can- 

er diagnosis and treatment. Thus, automated Computer-Aided Di- 

gnosis (CAD) for pulmonary nodule detection has been an active 

esearch field. Most of the CAD systems include two stages: nod- 

le candidate detection and false positive reduction. In order to 

etect nodules at different scales, most previous works extended 

D anchor-based detectors to handle 3D nodule detection, such as 

sing Faster R-CNN ( Ren et al., 2015 ), FPN ( Lin et al., 2017 ). Even

o, how to guarantee a high sensitivity with a lower false posi- 

ive rate is a challenging problem. Hence, False Positive Reduction 

FPR) models ( Ding et al., 2017; Dou et al., 2017 ) were adopted in

ulmonary nodule CAD systems as a second stage to reduce false 

ositives. To alleviate foreground-background class imbalance, fo- 

al loss ( Lin et al., 2017 ) was used to train anchor-based detec- 

ors ( Wang et al., 2020a ). These methods have largely improved 

he performance of pulmonary nodule detection ( Ding et al., 2017; 

heng et al., 2019; Wang et al., 2020a ). However, limited by the 

redefined anchor boxes and multiple stages, these methods need 

esearchers to carefully design many hyper parameters manually to 

btain a good performance. In addition, anchor-based multi-stages 

etectors require higher computational cost and time than anchor- 

ree detectors ( Tian et al., 2019 ). 

. Method 

The overall structure of the proposed SCPM-Net is illustrated 

n Fig. 1 . It consists of a feature extractor that takes advantage 

f multi-level spatial coordinate maps and Squeeze-and-Excitation 

SE)-based channel attention for better feature extraction, and a 

ead that predicts the existence of a nodule and its radius and off- 

et simultaneously at two resolution levels. To assist the training 

rocess, we propose a center points matching strategy to predict 

 points that are nearest to the center of a nodule. Inspired by 

linical guidance ( MacMahon et al., 2017 ), we use a novel sphere 

epresentation of nodules to improve the detection accuracy. We 

epresent the network’s 3D input as I ∈ R 

D ×H×W , where D, H and

 denote depth, height and width of the input image, respec- 

ively. The predicted feature map with the size of D 
R × H 

R × W 

R × C

an be obtained by forward process of the SCPM-Net, where R 

enotes down-sampling ratio and C denotes channel number. Let 

 C represent the center point map with one channel indicating 

he probability of each pixel (i.e., point) being close to the cen- 

er of a nodule, M R represent the radius map with one channel 

here each element gives the radius of the nodule centered at that 

ixel, and M O represent the offset map with three channels indi- 

ating offsets of the center point in the directions of x, y, and z, 

espectively. 

.1. Architecture of the CPM-Net 

The architecture of our detection backbone follows an encoder- 

ecoder flowchart as shown in the left of Fig. 1 . It has a series

f convolutional layers to learn 3D patterns. Each convolution uses 

 × 3 ×3 kernels with 1 as stride, and each down-sampling and 

p-sampling is implemented by max-pooling and deconvolution, 

espectively. Skip connections are used to link low-level features 

nd high-level features. Each of the last two decoder blocks in our 

PM-Net obtains three prediction maps, i.e. center point map M C , 

adius map M R , and offset map M O , respectively. To be clear, the 

enter point map ( M C ) is a pixel-wise binary classification map, 

here each element gives the probability of the corresponding 

ixel being a center point. Following ( Zhao et al., 2019 ), an offset

ap ( M O ) is used to represent the offset from the current point

o the real centroid of a nodule and a radius map ( M ) is used
R 
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Fig. 1. Overview of the proposed SCPM-Net. It consists of an encoder-decoder network with some fusion and attention blocks. The SCPM-Net predicts a center point map 

M C , a radius map M R and an offset map M O to locate target objects without any predefined anchor boxes. In the training stage, a novel center points matching strategy is 

used to mining hard example for better performance. A geometric-aware sphere representation is proposed to represent the nodule and a sphere-based IoU loss function 

( L SIoU++ ) is proposed to combine geometric measures with CNN for lung nodule detection. 
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o represent the predicted radii of the bounding spheres. In par- 

icular, we introduce multi-path normalized coordinate map fu- 

ion blocks to generate attentive features for being aware of spa- 

ial position. These coordinate maps are generated by using three 

hannels to encode the spatial coordinates along x, y, and z di- 

ections, respectively. We obtain a pyramid of the coordinate map 

y downscaling it into four resolution levels, with the size of 48 3 , 

4 3 , 12 3 , and 6 3 respectively. At each resolution level of the pyra-

id, we concatenate the coordinate map with the image features. 

ollowing ( Hu et al., 2018 ), SE-blocks are adopted to learn spatial 

nd channel-wise attentions to enhance more discriminative fea- 

ures. In the last block of the encoder, we utilize a dilated fusion 

lock, consisting of three dilated convolutions with dilation rates 

f 1, 2, 3 respectively. In the training phase, we use a proposed 

enter-points matching procedure as mentioned in Section 3.2 and 

 combination loss as described in Section 3.4 . In the testing phase, 

 bounding sphere of detection result can be constructed by the 

osition of predicted centroids, radius, and offset as clarified in 

ection 3.5 . 

.2. Center-points matching 

Anchor-based methods assign positive and negative anchors ac- 

ording to the threshold of overlap between anchor boxes and 

round-truth for training. In contrast, without any anchor prior, 

 novel center-points matching strategy for training is proposed 

n this work to assign positive, negative, and ignored labels to 

ake the network predict whether a point belongs to center points 

f lung nodules. In short, this center-points matching process is 

o generate classification labels in the training phase on the fly. 

ig. 2 shows two different point matching strategies in the train- 

ng phase: (a) a simple center point matching strategy, where the 

odule is only associated with one centroid. (b) our proposed top- 

 points matching strategy, which uses K points near the centroid 

o represent a nodule. 

The whole strategy can be divided into four steps: 1) calculating 

he distance between each point to the ground truth centroid and 

sing the distance map as a prior to assigning positive, negative, 

nd ignored points; 2) selecting top- K points that are nearest to a 

entroid as the positive point set P; 3) to reduce the false positive, 

 certain amount of points around positive points are put into the 

et of ignored points I . The remaining points are treated as a tem- 

orary negative points-set N ; 4) using online hard example mining 

OHEM ( Shrivastava et al., 2016 ), detailed in Section 3.4 ) to further
4 
ample hard negative points as point set N 

′ ⊂ N , while points in 

 − N 

′ are reset to the ignored points, and therefore we can ob- 

ain an ignored point set I ′ = I + N − N 

′ . The points assigning 

rocess in the training phase is shown in Fig. 3 . It is worth men-

ioning that this matching strategy can be used to train any center 

oints-based anchor-free detector. But in this paper, we pay more 

ttention to training a detector to predict the bounding sphere. We 

oop all the annotations in the image using the above steps. Note 

hat the top- K positive points are selected according to the lowest 

istance values sorted in the distance map, and ignored points do 

ot participate in training. 

.3. Sphere representation and sphere-based loss functions 

.3.1. Similarity based on sphere representation 

Due to the ellipsoid-like shape, lung nodules can be bet- 

er represented by the bounding sphere than the bounding 

ox ( Sladoje et al., 2005 ). In clinical pulmonary nodule diagnosis, 

t is a common practice that using the coordinate and diameter to 

epresent the nodule in 3D space ( Setio et al., 2017; MacMahon 

t al., 2017 ). Based on these observations, we use the sphere rep- 

esentation for nodules in 3D space. First, we introduce a sphere- 

ased intersection-over-union (SIoU) to measure the similarity be- 

ween a predicted nodule and the ground truth nodule. The SIoU 

imilarity is defined as: 

IoU = 

| S a ∩ S b | 
| S a ∪ S b | (2) 

here S a and S b denote the predicted bounding sphere and the 

round truth bounding sphere respectively as shown in Fig. 4 (a). 

o better formulate this method, we use a projection view to il- 

ustrate calculation details in Fig. 4 (b). The centroids of sphere A 

nd sphere B are defined as A (x 1 , y 1 , z 1 ) and B (x 2 , y 2 , z 2 ) in im-

ge space respectively. r a and r b denote the radius of sphere A and 

phere B respectively. The distance of between the central coordi- 

ates of sphere A and B is defined as: 

 

AB = || A − B || 2 (3) 

hen S a and S b are intersected, i.e., r a + r b > d AB , let φa and φb 

enote the central angles of the two spheres, respectively, and let 
ab denote the intersection angle. h 1 and h 2 represent the distance 

etween the intersected chord to the arcs, respectively, as shown 

n Fig. 4 (b). These values and the intersection between A and B can 
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Fig. 2. Illustration of center-point matching used for training. (a) is a simple center point matching strategy, where a nodule is only associated with a single centroid. (b) is 

our proposed top- K center points matching strategy, where we find K points around the centroid of the nodule. 

Fig. 3. The points assigning process in the training phase. Red, white and the others 

grids mean positive, ignored and negative points respectively. 
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e obtained by: 

os (φa ) = 

(r a ) 2 + (d AB ) 2 − (r b ) 2 

2 r a d AB 
(4) 

os (φb ) = 

(r b ) 2 + (d AB ) 2 − (r a ) 2 

2 r b d AB 
(5) 

os (φab ) = 

(r b ) 2 + (r a ) 2 − (d AB ) 2 

2 r a r b 
(6) 

 1 = r b (1 − cos (φb )) (7) 

 2 = r a (1 − cos (φa )) (8) 

 S a ∩ S b | = π r a h 

2 
2 −

πh 

3 
2 

3 

+ π r b h 

2 
1 −

πh 

3 
1 

3 

(9) 

hen S a and S b are not intersected, i.e., r a + r b < = d AB , | S a ∩ S b | is
. The union between S a and S b is defined as: 

 S a ∪ S b | = 

4 π((r a ) 3 + (r b ) 3 ) 

3 

− | S a ∩ S b | (10) 

ased on these sub-modules, we can calculate the SIoU similarity 

f two spheres using Eq. (2) . 
Fig. 4. Illustration of SIoU calculation. (a) An example of intersection between two 

5 
.3.2. Sphere-based intersection-over-union loss function 

The effectiveness of IoU-based loss function has been well 

roven for 2D detection tasks ( Rezatofighi et al., 2019; Zheng et al., 

020; Zhou et al., 2019 ). However, there are few works that focus 

n designing loss function for 3D object detection, especially in 3D 

edical images. Based on our proposed sphere representation, we 

ntroduce a Sphere Intersection-over-Union (SIoU) loss for 3D nod- 

le detector training which is inspired by ( Rezatofighi et al., 2019; 

heng et al., 2020; Zhou et al., 2019 ): 

 SIoU = 1 − SIoU (11) 

here SIoU is defined in Eq. (2) . Similarly with traditional Inter- 

ection over Union loss function L IoU ( Zhou et al., 2019a ), L SIoU 

nly works when the predicted sphere and the ground truth have 

verlap, and would not provide any moving gradient for non- 

verlapping cases. To deal with the cases where S a and S b are not 

ntersected, we additionally use distance and radius ratio ( R DR ) for 

ptimization. 

 DR = 

d AB 

d AB + r a + r b 
(12) 

hen, we integrate the R DR into L SIoU : 

 SDIoU = 1 . 0 + R DR − SIoU (13) 

n addition, we found that the angle of intersection φab between 

he two spheres can also be used to better describe the regression 

f the sphere. We therefore define a angle score η as follows: 

= 

{
0 , if d AB > (r a + r b ) 
arccos (cos (φab )) 

π , otherwise 
(14) 

here cos (φab ) have been calculated in Eq. (6) . Finally, we inte- 

rated all geometric measures (sphere iou, distance and radius ra- 

io, angle of intersection) into a unified loss, which is referred to 

s L SIoU++ : 

 SIoU++ = 

{
R DR , if d 

AB > (r a + r b ) 
1 . 0 + R DR − SIoU + η, otherwise 

(15) 
spheres; (b) A projection view of the intersection area between two spheres. 
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t can be observed that the sphere representation considers many 

eometric measures, i.e., overlap area ( S a ∩ S b ), central point dis- 

ance ( d AB ) and angle of intersection ( η), which have been ignored

n the other representations. The pseudo-code for L SIoU++ compu- 

ation with two spheres is given in Algorithm (1) . The properties 

Algorithm 1: Pseudocode of L SIoU++ for 3D Lung Nodules De- 

tector Training. 

Input : Central coordinates A (x 1 , y 1 , z 1 ) and B (x 2 , y 2 , z 2 ) and 

radii r a and r b of two spheres in image space 

respectively. 

Output : L SIoU++ ; 
Initialization: d AB = || A − B || 2 ; R DR = 

d AB 

d AB + r a + r b ; 

if ( r a + r b ) > d AB then 

Calculate | S a ∩ S b | according to Eq.~(9); 

Calculate | S a ∪ S b | according to Eq.~(10); 

Calculate the SIoU according to Eq.~(2); 

Calculate the angle score η using Eq.~(14); 

Calculate L SIoU++ = 1.0 + R DR - SIoU + η; 

end 

else 
L SIoU++ = R DR ; 

end 

return L SIoU++ ; 

f L SIoU++ function can be summarized as follows: 

1) Like the genral L IoU , our L SIoU++ is invariant to the scale of re-

gression problem. 

2) L SIoU++ can alleviate the gradient vanishing problem when 

there is not overlap between prediction and the ground truth. 

3) L SIoU++ converges much faster than L IoU , since L SIoU++ mini- 

mizes the overlap, distance, radius ratio and angle of intersec- 

tion directly. 

.4. The overall loss function 

The imbalance of positive and negative samples in 3D point 

lassification is more severe than that in 2D point classi- 

cation. A hybrid method of Online Hard Example Mining 

OHEM) ( Shrivastava et al., 2016 ) and re-focal loss ( Lin et al., 2017 )

re used in our SCPM-Net to deal with such a huge imbalance. In 

HEM, we select some hardest negative point samples for training. 

pecifically, all the negative points are sorted in the descending or- 

er of the center point classification loss, and we select the first N

oints of them after the sorting. N is set to n times of M if M > 0

nd 100 otherwise, where M is the number of positive points in 

he input image and n is the ratio between negatives and positives 

amples. In the end, negative points those are not selected are re- 

et as ignored points. A re-focal loss is shown as Eq. (16) , which

an improve the sensitivity and further balance the gradient of the 

ositives and the negatives. 

 cls = 

J ∑ 

j=0 

−w j α(1 − p j ) 
γ log (p j ) (16) 

The weight of re-focal loss is defined as: 

 j = 

{ 

1 , if j ∈ P and p j > t or j ∈ N 

0 , if j ∈ I 
w , if j ∈ P and p j < t 

(17) 

here p j denotes the probability of point j being the centroid of a 

odule. J = 

D 
R × H 

R × W 

R is the total number of points. t is a thresh- 

ld to filter unqualified points, and w is a weight to balance the 
6 
e-focal loss. A smooth L 1 loss ( Ren et al., 2015 ) is also used to

egress the normalized radius of bounding sphere: 

 radius ( r, r 
∗) = 

{
0 . 5(r −r ∗) 2 

β
, if | r − r ∗| < β

| r − r ∗| , otherwise 
(18) 

here r denotes predicted radius value, and r ∗ is the ground truth 

adius value. To obtain more accurate locations of small objects, we 

se L 2 loss to regress the offset between the center points ground 

ruth and the predicted positive points. 

 of f set ( f, f 
∗) = || f − f ∗|| 2 (19) 

here f and f ∗ are 3D vectors and denote the predicted and 

round truth offsets, respectively. The total loss is expressed by the 

ollowing equation: 

 total = L cls + α(L radius + L of f set + λs L SIoU++ ) (20) 

here L radius , L of f set and L SIoU++ are only meaningful for positive 

oints, thus we define α = 1 for points in P and 0 for points in I
nd N . λs represents the weight factor of L SIoU++ . 

.5. Implementation details 

We used PyTorch ( Paszke et al., 2019 ) to implement our 

CPM-Net. The training and testing process were done via Sense- 

are ( Duan et al., 2020 ) platform with one 8-core Intel E5- 

650 CPUs, 8 NVIDIA 1080Ti GPUs and 2T memory. During pre- 

rocessing, following ( Liao et al., 2019; Song et al., 2020; Wang 

t al., 2020 ), we resampled all images to the isotropic resolution of 

.0 × 1.0 × 1.0 mm 

3 to reduce the spatial variation among images 

nd normalized them to zero mean and unit variance. The coordi- 

ate map was generated based on the entire image and re-scaled 

o [0–1] and saved into memory, before the training stage. In the 

raining phase, we randomly cropped an image patch and coordi- 

ate map with a size of 96 × 96 × 96 as the input of SCPM-Net. 

or each model, we used 170 epochs in total with stochastic gradi- 

nt descent optimization, momentum 0.9, and weight decay 10 −4 . 

he batch size was 24. The initial learning rate was 10 −4 in the 

rst 20 epochs for warm up training, and then set as 10 −2 , 10 −3 

nd 10 −4 after 20, 80 and 150 epochs, respectively. 

In the inference phase, we used sliding window with a stride 

f 24 × 24 × 24 to obtain the whole scan’s prediction. Then, we 

icked up top- n candidate predicted points [ p 0 , p 1 , . . . , p n −1 ] in

 classification map with a size of D × H × W × 1 by sorting the 

robabilities. Each predicted candidate point has a probability p j in 

 3D integer location x j ∈ Z 

3 . In the same integer location, we can

et an offset prediction v j ∈ R 

3 and a radius prediction r j , respec-

ively. Then a detected bounding sphere will be located at x j + v j 
ith a radius of r j . Finally, all the detected spheres will pass a 3D

IoU++ based non-maxima suppression (NMS) ( Ren et al., 2015; 

heng et al., 2020 ) to filter overlapping spheres. Compared with 

oU-based NMS, the SIoU++ based NMS uses SIoU and distance and 

adius ratio of two spheres as the measures to filter redundant 

pheres. Parameter setting was K = 7, λs = 2, n = 100, t = 0.9,

 = 4, β = 

1 
9 , α = 0.375, γ = 2 based on a grid search with the

alidation data. 

. Experimental results 

.1. Dataset and evaluation metrics 

In this work, we validated the proposed framework on the 

arge-scale public challenge dataset of LUNA16 ( Setio et al., 

017 ), which contains 888 low-dose CT scans with the cen- 

roids and diameters of the pulmonary nodules annotated. In the 

UNA16 challenge, performances of detection systems are eval- 

ated using the Free-Response Receiver Operating Characteristic 
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Fig. 5. The detection performance of CPM-Net with center points matching strategy 

with different values of K . 

Fig. 6. The detection performance of CPM-Net with center points matching strategy 

under different ratios ( n ) between negatives and positives samples. 

(

b

d

S  

a

p

a

w

u

c

o

4

4

w  

p

p

i

o  

t

s

i

t

f

m

4

d

i

a  

i

a

1

Table 1 

Ablation study of CPM-Net with different training strategies. (FPs/Scan: the false 

positives per scan). 

Module 

Sensitivity 

FPs/Scan = 1 FPs/Scan = 2 FPs/Scan = 8 

Baseline 78.7% 81.2% 85.0% 

Baseline + OHEM 85.3% 88.8% 90.5% 

Baseline + OHEM + Focal Loss 89.3% 90.2% 91.5% 

Baseline + OHEM + Re-Focal Loss 91.2% 92.4% 92.5% 

Table 2 

Ablation study of CPM-Net. SE and CA represent squeeze-and-excitation attention 

and coordinate attention respectively. CPM-Net 2 and CPM-Net 1 denote the result at 

the second to last and last decoder blocks respectively, CPM-Net means the merging 

results of CPM-Net 2 and CPM-Net 1 . (FPs/Scan: the false positives per scan). 

Module 

Sensitivity 

FPs/Scan = 1 FPs/Scan = 2 FPs/Scan = 8 

w/o SE and CA 86.8% 89.4% 90.4% 

w/o CA 90.5% 90.8% 91.5% 

CPM-Net 91.2 % 92.4 % 92.5% 

CPM-Net 2 90.2% 91.9% 92.2% 

CPM-Net 1 90.8% 92.2% 93.2% 
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FROC) ( Setio et al., 2017 ). The sensitivity and the average num- 

er of false positives per scan (FPs/Scan) are used to measure the 

etector’s performance. Following existing works ( Cao et al., 2020; 

ong et al., 2020 ), we firstly used the first nine subsets for training

nd the last subset for validation during ablation study and com- 

arison with several open-source methods in the same settings, 

nd these results are presented in Section 4.3, 4.2, 4.4, 4.5.1 . Then, 

e compared the proposed method with state-of-the-art methods 

sing standard 10-fold cross-validation in Section 4.5.2 , for a fair 

omparison. We used the official results of these works rather than 

ur re-implemented results. 

.2. Effect of center-points matching strategy 

.2.1. Impacts of different K values 

To investigate the effect of our center-points matching strategy, 

e set λs in Eq. (20) to 0 without any additional effort s, and com-

ared the performance at different K values for selecting the top- K 

ositive center points of each nodule during training, as mentioned 

n Section 3.2 . Fig. 5 shows evolution of the detector’s performance 

n the testing subset when K changes from 5 to 9. It can be found

hat when K is greater or smaller than 7, the sensitivity goes down 

ignificantly. This is because too many positive points during train- 

ng will bring in false positives while few positive points weaken 

he model’s ability to locate the nodules. Therefore, we set K = 7 

or our center-points matching strategy in the following experi- 

ents. 

.2.2. Impacts of different ratios of negative and positives samples 

We further investigate the impacts of detection results under 

ifferent ratios of negatives and positives samples ( n ), as described 

n Section 3.4 . The detection performance at different ratios of neg- 

tives and positives samples is shown in Fig. 6 . It can be found that

ncreasing n from 10 to 100 leads to the sensitivity improvement 

t 1FP/Scan and 2FPs/Scan. When n equals 120 the sensitivity at 

FP/Scan and 2FPs/Scan becomes lower. However, the sensitivity at 
7 
FPs/Scan increases progressively when changing n from 10 to 120. 

his shows that the ratios of negatives and positives samples affect 

he detection results in different ways, where a larger ratio may 

ause more false positives. In the following experiments, we set n 

o 100, as it can achieve better results at 1FP/Scan and 2FPs/Scan 

here they are more important in clinical practice. 

.2.3. Contributions of different training strategies 

To measure the contribution of each training strategy used 

n this work, we also implemented an ablation study based on 

he proposed detector. The baseline just uses the naive classifica- 

ion loss, radius, and offsets regression losses without OHEM and 

ocal/Re-Focal Loss strategies. We compared the baseline with: 1) 

aseline + OHEM, where the OHEM strategy was used for hard ex- 

mples mining; 2) Baseline + OHEM + Focal Loss, where a Focal 

oss was further used to balance the impact of hard and easy sam- 

les; 3) Baseline + OHEM + Re-Focal Loss, where a Re-Focal Loss 

as introduced for better results. Quantitative evaluation results 

f these strategies are listed in Table 1 . It can be found that using

HEM, Focal Loss, and Re-Focal Loss can achieve better results than 

he baseline. Compared with the classical Focal Loss ( Lin et al., 

017 ), the Re-Focal Loss improves the sensitivity at all Fps/Scan, 

emonstrating the effectiveness of the proposed Re-Focal Loss. 

.3. Analysis of CPM-Net 

The attentive module with Coordinate Attention (CA) and 

queeze-and-Excitation (SE) attention is a crucial component 

f our CPM-Net. To understand each component’s contribution 

o performance, we perform an ablation study firstly. Follow- 

ng ( Song et al., 2020 ), λs in Eq. (20) was set as 0 to investigate

he effectiveness of CPM-Net without any extra effects. In addi- 

ion, the OHEM and the center-points matching strategy are used 

o train detectors stably and efficiently, and K and n are set to 7, 

00 respectively. Then, we trained three models: 1) CPM-Net with- 

ut both CA and SE attentions; 2) CPM-Net without CA but with 

E attention module; 3) CPM-Net with both CA and SE attentions. 

 quantitative evaluation of this ablation study is listed in Table 2 . 

t shows that adding SE and CA improves the sensitivity by 4.4% at 

 FPs/Scan, by 3% at 2 FPs/Scan and by 2.1% at 8 FPs/Scan, respec- 

ively. Then, we investigate the detector performance by predicting 

he result at different resolution levels of the decoder of CMP-Net. 
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Fig. 7. Comparison of the gradients of different loss functions with respect to z

when S a gradually moves to S b along the z-axis ( d AB changes from 8 to 0). 
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Fig. 8. The evolution curve of mean FROC on the validation set. The green, blue, 

lime, and red curves show the performance of the CPM-Net and the CPM-Net with 

the L IoU , L SIoU and L SIoU++ respectively. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Comparison of FROC curves using different network configurations, with 

shaded areas presenting the 95% confidence interval. 

Table 3 

Ablation study of L SIoU++ function. The L SIoU++ consists of sphere IoU term (SIoU), 

angle of intersection and distance-radius-ratio term ( R RD ). (FPs/Scan: the false 

positives per scan). 

Method 

Sensitivity 

FPs/Scan = 1 FPs/Scan = 2 FPs/Scan = 8 

CPM-Net 91.2% 92.4% 92.5% 

CPM-Net + L IoU 90.4% 91.3% 94.2% 

CPM-Net + L SIoU 90.0% 92.4% 93.5% 

CPM-Net + L SIoU + L R RD 
90.5% 92.1% 93.0% 

CPM-Net + L SIoU++ (SCPM-Net) 92.3 % 92.7 % 94.8 % 

Table 4 

Comparison of different detectors on LUNA16 dataset. (FPs/Scan: the false positives 

per scan). 

Method 

Sensitivity 

FPs/Scan = 1 FPs/Scan = 2 FPs/Scan = 8 

3D CenterNet ( Duan et al., 2019 ) 71.4% 75.8% 77.5% 

DeepLung ( Zhu et al., 2018 ) 85.8% 86.9% 87.5% 

3D RetinaNet ( Lin et al., 2017 ) 83.6% 86.8% 88.7% 

3D RetinaNet + ( Lin et al., 2017 ) 88.8% 91.3% 91.4% 

CPM-Net ( Song et al., 2020 ) 91.2% 92.4% 92.5% 

Ours 92.3% 92.7% 94.8% 
e use CMP-Net 1 to denote only predicting at the last block, and 

se CMP-Net 2 to denote predicting at the second to last block. It 

an be found that CPM-Net 1 achieves better results than CPM-Net 2 . 

fter merging the results of CPM-Net 1 and CPM-Net 2 , the CPM- 

et achieves the best results, indicating the two-level outputs can 

ring performance gain than just a single-level output. 

.4. Effects of sphere-based intersection-over-union loss 

We first analyzed the difference of gradient between L IoU , L SIoU 

nd L SIoU++ by simulating the procedure of sphere regression us- 

ng gradient descent algorithm. To better formulate this study, we 

uppose that the predicted sphere S a is at (0, 0, -8) and and 

he ground truth sphere S b is at the origin of 3D coordinate. As- 

ume both of them have a radius of 1.5. Then, we calculate the 

artial derivatives: 
∂L IoU 

d z 
, 

∂L SIoU 
d z 

, 
∂L SIoU++ 

d z 
when S a gradually moves 

o S b along the z-axis. Fig. 7 shows evolution of these gradient 

alues with different d AB . Compared with L IoU and L SIoU , L SIoU++ 
an provide optimization directions for non-overlapping cases (i.e., 

 

AB > 3 ). In addition, L SIoU++ has higher gradient values than L IoU 

nd L SIoU , since L SIoU++ is a joint optimization loss which considers 

ore geometric measures (overlap, distance, radius ratio and angle 

f intersection). 

We further analyzed the ability of convergence of the baseline 

ith or without using L SIoU++ , L SIoU and L IoU . In this study, we

sed the powerful CPM-Net as a baseline and then further com- 

ined L SIoU++ , L SIoU and L IoU with the baseline to train the detec- 

or. The evolution of mean FROC curve on the validation set is 

resented in Fig. 8 . It shows that L SIoU++ accelerates the conver- 

ence of the baseline and leads to better performance than L SIoU 

nd L IoU . Note that there exists a sudden drop of mean FROC at 

he 20th epoch, which is because we used learning rate warm up 

trategy ( Gotmare et al., 2018 ) to boost the network’s performance. 

ig. 8 also shows that L SIoU++ is more stable than L IoU and L SIoU 

hen the learning rate changed. 

Finally, we investigated the contribution of each submodule in 

 SIoU++ function and also compared L SIoU++ with L IoU with the same 

xperimental setting. A quantitative evaluation of these methods is 

isted in Table 3 . It shows that using L IoU to train a strong net-

ork (CPM-Net) leads to worse results in 1 and 2 FPs/Scan than 

sing L SIoU with R RD and the baseline. In contrast, L SIoU++ has the 

bility to boost the network’s performance. Meanwhile, we found 

hat the distance term R RD and angle of intersection term η impact 

he results in different ways but the combination of these terms 

eads to better than baseline. It further demonstrated that more 

eometric measures can boost the model to capture more geomet- 

ic information rather than just focus on reducing regression error. 

n addition, we also investigated the computational cost of these 
8 
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Fig. 10. Visualizations of detection results obtained by different methods, where 

dotted circles represent missed cases and solid circles represent correct detection. 
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eometric measure metrics in the training stage in the same set- 

ings, we found that all of them require very close training time 

2.4s each iteration), which indicates that L SIoU++ can boost detec- 

ion performance without computational cost increasing 
ig. 11. Visualizations of detection results obtained by different methods in the 3D spac

mall, we dilate these nodules with a 3 × 3 × 3 kernel for better visualization. (For inter

he web version of this article.) 

9 
.5. Comparison with existing methods 

.5.1. Comparison with different detectors 

We compared our method with some powerful anchor- 

ased detectors including Deeplung ( Zhu et al., 2018 ), 3D Reti- 

aNet ( Lin et al., 2017 ) and 3D RetinaNet++ ( Lin et al., 2017 ),

nd also with several existing anchor-free-based detectors includ- 

ng 3D CenterNet ( Duan et al., 2019 ) and CPM-Net ( Song et al.,

020 ). In this study, we re-implemented the 3D version of Cen- 

erNet ( Duan et al., 2019 ) and RetinaNet ( Lin et al., 2017 ) follow-

ng the original works’ descriptions. It should be noted that 3D 

etinaNet++ is an enhanced version of 3D RetinaNet, adopting the 

ame OHEM and re-focal loss as our SCPM-Net and using an online 

nchors’ matching strategy instead of offline pre-determining strat- 

gy in ( Lin et al., 2017 ). We drew the FROC curve in Fig. 9 demon-

trating the sensitivities at seven predefined FPs/Scan rates: 1 / 8 , 

 / 4 , 1 / 2 , 1, 2, 4 and 8. A quantitative evaluation of these methods

t 1,2 and 8 FPs/Scan are listed in Table 4 . Our SCPM-Net achieved

ensitivities of 92.3% at 1 FPs/Scan and 92.7% at 2 FPs/Scan. The 

nchor-free 3D CenterNet obtained the lowest performance, which 

s due to that it uses a single centroid to represent a nodule, re- 

ulting in location failure and false negatives. In contrary to Center- 

et ( Duan et al., 2019 ), our SCPM-Net uses multi-point matching to 

educe the false negatives, and thus increases the sensitivity. Com- 

ared with CPM-Net ( Song et al., 2020 ), SCPM-Net outperformed 

PM-Net in terms of all the three evaluation metrics, since it used 

 SIoU++ for model training which takes many geometric properties 

nto account, i.e., sphere overlap, center point distance and angle 
e, where blue spheres represent lung nodules. Due to some lung nodules are too 

pretation of the references to colour in this figure legend, the reader is referred to 
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Table 5 

Comparison between our method and the state-of-the-art methods on LUNA16 dataset using a standard 10-fold cross validation. (FPs/Scan: False positives per scan, FPR: 

False positive reduction). 

Method 

Sensitivity 

FPR Stages 
FPs/Scan = 0.125 FPs/Scan = 0.25 FPs/Scan = 0.5 FPs/Scan = 1.0 FPs/Scan = 2.0 FPs/Scan = 4.0 FPs/Scan = 8.0 Average 

Dou et al., 2017 65.90 74.50 81.90 86.50 90.60 93.30 94.60 83.90 w 3 

Zhu et al., 2018 66.20 74.60 81.50 86.40 90.20 91.80 93.20 83.40 w 3 

Liao et al. (2019) 59.38 72.66 78.13 84.38 87.50 89.06 89.84 80.13 w/o 2 

Tang et al. (2019) 70.82 78.34 85.68 90.01 94.25 95.49 96.29 87.27 w 3 

Li and Fan (2020) 73.90 80.30 85.80 88.80 90.70 91.60 92.00 86.20 w 3 

Song et al., 2020 72.30 83.80 88.70 91.10 92.80 93.40 94.80 88.10 w/o 1 

Mei et al. (2021) 71.17 80.18 86.49 90.09 93.69 94.59 95.50 87.39 w 3 

Ours 74.3 82.9 88.9 92.2 93.9 95.8 96.4 89.2 w/o 1 
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f intersection of two spheres. In addition, we also investigated 

he inference time of each detector with the same experimental 

ettings and hardware. For all one-stage detectors (3D CenterNet, 

D RetinaNet, 3D RetinaNet++, CPM-Net, and SCPM-Net) based on 

he same backbone, they spend very close inference time (8.37s 

er scan), but SCPM-Net achieves a better sensitivity than the oth- 

rs. The multi-stage detectors are time-consuming, e.g., DeepLung 

equires more than 11s per scan for inference. In contrast, SCPM- 

et requires less inference time with a higher accuracy. Fig. 10 and 

ig. 11 show some visualization results of different detectors in 

he 2D slice-level and 3D volume-level respectively. It can be ob- 

erved that SCPM-Net is able to capture small nodules that would 

e missed by the other detectors with fewer false-positive samples. 

.5.2. Comparison with state-of-the-art lung nodule detectors 

We further compared our method with several published 

tate-of-the-art lung nodule detection methods on the LUNA16 

ataset ( Setio et al., 2017 ): Dou et al., 2017 employed a two-stage

ramework which consists of a candidate screening stage and false 

ositive reduction stage; Zhu et al., 2018 used a three-stage frame- 

ork consisting of candidate generation, feature extraction and 

lassification; Liao et al. (2019) presented a two-stage 3D network 

or lung nodule detection and benign/malignant diagnosis and won 

he Data Science Bowl 2017 competition; Tang et al. (2019) pro- 

osed a multi-task framework to solve nodule detection, false- 

ositive reduction, and nodule segmentation jointly; Song et al., 

020 developed an anchor-free detector which obtains the detec- 

ion results by regressing the bounding box size of the nodule and 

ocal offset of the center points; Li and Fan (2020) proposed a 

D encoder-decoder network with a “Squeeze-and-Excitation” at- 

ention module and a dynamically scaled cross-entropy loss for 

ung nodule detection and false-positive reduction at the same 

ime; Mei et al. (2021) proposed a slice-aware network to capture 

ong-range dependencies among any positions and any channels of 

ne slice group in the feature map. The quantitative comparison of 

hese methods based on a standard 10-fold cross-validation is pre- 

ented in Table 5 . It shows that our SCPM-Net achieves better per- 

ormance just with a simpler one-stage framework. Note that we 

sed these works’ reported results rather than our re-implemented 

esults in Table 5 , but it would be of interest to compare them with

he same software and hardware environment in the future. 

. Discussion and conclusion 

We have successfully evaluated the proposed SCPM-Net and 

 SIoU++ on a large lung nodule detection dataset ( Setio et al., 2017 ).

o overcome the drawbacks of anchor-based approaches, we pro- 

ose an anchor-free framework to detect lung nodules in 3D CT 

cans. To capture context efficiently, we integrate Squeeze-and- 

xcitation modules ( Hu et al., 2018 ) and multi-level spatial coor- 

inate maps into an encoder-decoder structure for better perfor- 

ance. Inspired by anchor-matching methods ( Zhang et al., 2019; 
10 
en et al., 2015 ), we propose a center points matching method 

o train the detector more efficiently. Based on the fact of anno- 

ating nodules as spheres in clinical practice ( MacMahon et al., 

017 ), we use bounding spheres to represent nodules rather than 

ounding boxes, and further combine geometric measures to pro- 

ose a sphere-based intersection-over-union loss function ( L SIoU++ ) 
o train the detector. All these sub-modules and loss functions con- 

titute a powerful and efficient detector for lung nodule detection. 

n this work, we just used the L SIoU++ function to train our pro- 

osed anchor-free detectors for lung nodules detection, it may also 

e extended to train anchor-based detectors. 

Recently, Yang et al. (2020) proposed an anchor-free detection 

ethod with circle representation (i.e., CircleNet), and the main 

ifferences between SCPM-Net and CircleNet are: 1) CircleNet uses 

D circles to represent the glomerulus in 2D pathology images, 

hile our method uses spheres to represent lung nodules in 3D 

pace, which is inspired by clinical practice of lung nodule diag- 

osis and measurement; 2) For detector optimization, our SCPM- 

et uses a sphere-based loss function, and CircleNet just uses cir- 

le IoU as a metric for loss calculation. 3) To accelerate the con- 

ergence, SCPM-Net introduces many geometric metrics to L SIoU++ , 
hich was not considered in CircleNet. Note that our framework 

an be easily extended to other detection tasks, such as lesion de- 

ection, as the SCPM-Net is a general anchor-free framework and 

oes not rely on any specific task, and the L SIoU++ considers many 

eometric metrics that may be applied to other structures as well. 

n the future, we will investigate further improving the efficiency 

f the anchor-free detector, and validate it with other clinical ap- 

lications. 

In conclusion, we propose a novel 3D sphere representation- 

ased center-points matching detection network (SCPM-Net) for 

ulmonary nodule detection from volumetric CT images. Mean- 

hile, we use an attentive module consisting of coordinate atten- 

ion and squeeze-and-excitation attention to capturing spatial po- 

ition. Besides, we adopt a hybrid method of online hard exam- 

le mining (OHEM) and re-focal loss to solve the imbalance be- 

ween positive points and negative points. In addition, we intro- 

uce a novel sphere representation for lung nodules detection in 

D space and propose a novel loss function L SIoU++ that consid- 

rs geometric measures for training. Experimental results on the 

UNA16 nodule detection dataset show that the proposed SCPM- 

et achieves a better or comparable performance with a sim- 

ler architecture compared with several state-of-the-art single- 

tage and multi-stage approaches. The high sensitivities in single- 

tage inference demonstrate promising potential for further clinical 

se. 
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