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Abstract— Recognition and quantitative analytics of
histopathological cells are the golden standard for diag-
nosing multiple cancers. Despite recent advances in deep
learning techniques that have been widely investigated for
the automated segmentation of various types of histopatho-
logical cells, the heavy dependency on specific histopatho-
logical image types with sufficient supervised annotations,
as well as the limited access to clinical data in hospitals, still
pose significant challenges in the application of computer-
aided diagnosis in pathology. In this paper, we focus on
the model generalization of cell segmentation towards
cross-tissue histopathological images. Remarkably, a novel
target-specific finetuning-based self-supervised domain
adaptation framework is proposed to transfer the cell
segmentation model to unlabeled target datasets, without
access to source datasets and annotations. When per-
formed on the target unlabeled histopathological image set,
the proposed method only needs to tune very few param-
eters of the pre-trained model in a self-supervised manner.
Considering the morphological properties of pathological
cells, we introduce two constraint terms at both local and
global levels into this framework to access more reliable
predictions. The proposed cross-domain framework is vali-
dated on three different types of histopathological tissues,
showing promising performance in self-supervised cell seg-
mentation. Additionally, the whole framework can be further
applied to clinical tools in pathology without accessing
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I. INTRODUCTION

PATHOLOGICAL images are treated as golden standards
for clinical diagnosis and cancer grading, where doctors

can carefully examine morphologies and appearances from
cells to whole-slice tissues for quantitative and qualitative
evaluation. Especially, recognition and quantitative analysis of
cells play critical roles in pathological examinations, which
can help doctors to identify particular subtypes of cancers,
evaluate cancer stages, and correlate with genetic mutations.
In clinical applications, analytics of cells generally include the
identification of cell types, description of cell morphologies,
computation of the percentage of nucleus and cells, etc.
Traditionally, these works like cell segmentation, detection,
and identification are all finished by pathologists and doc-
tors, which are extremely labor-intensive and time-consuming.
As reported in Metter et al. [1], the number of pathologists is
far from enough in most countries.

To alleviate these problems, deep learning techniques have
been investigated for computer-aided diagnosis of pathological
images in recent years. Notably, in the task of cell/nuclei
segmentation, Janssens et al. [2] exploited supervised learn-
ing techniques to segment nuclei in follicular lymphoma
pathological images by using a K-NN [3] classifier to learn
a mapping from the traditional RGB space to the MDC.
And lately, Chen et al. [4] proposed a deep contour-aware
network (DCAN) to establish better cell segmentation by a
multi-task learning framework that learns probability maps
and clear contours in a single network at the same time.
As for cell segmentation on different kinds of tissues, Haq
and Huang [5] proposed a self-supervised domain adapta-
tion framework based on GAN [6] to do domain adaptation
between Kidney Renal Clear cell carcinoma (KIRC) and Triple
Negative Breast Cancer (TNBC) tissues and got good segmen-
tation results on both domains. Besides, there are also multiple
public challenges and datasets have been released for the task
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of cell segmentation, including the data science bowl [7],
MoNuSeg (Multi-organ nuclei segmentation challenge) [8] and
MoNuSAC (Multi-organ nuclei segmentation and classifica-
tion challenge) [9]. To train these fully-supervised methods
above, sufficient annotations with specific types of images
are always required, where images have corresponding pixel-
level ground-truth labels [10]. Accordingly, many researchers
made public datasets to help other researchers to do research
on this task, like the KIRC dataset [11] which consists
of Kidney Renal Clear cell carcinoma (KIRC) pathological
images and labels, Triple Negative Breast Cancer Cell (TNBC)
pathological images and labels data [12], TCIA dataset [13]
that consists pathological images from 14 different tissues, and
Pannuke dataset [14] that consists pathological images from
19 different tissues.

Despite the above novel methods and public repositories
having facilitated the research on pathological CAD, there
are still multiple challenges that prevent the application of
deep learning on clinical cell segmentation and quantification.
Firstly, cell segmentation is indeed a challenging task. The
background of pathological images is complex and noisy,
especially considering the segmentation at the cell level. The
cell segmentation task generally requires a lot of training
samples with good annotations to support the fully-supervised
deep neural network. However, manual annotation of cells
is highly labor-intensive and time-consuming. Secondly, most
deep models are only suitable for the given training set, which
cannot be generalized to other image modalities. However,
there are hundreds to thousands of types of tissues and
cells in pathological diagnosis. Pathological images and cells
generally demonstrate different appearances, which can be
imaged from various tissues using different staining methods
and microscopes. It is impossible to collect sufficient well-
annotated pathological images for all types of tissues and
cells. Thirdly, in clinical applications, hospitals, and medical
centers generally have separate information systems with strict
requirements of data privacy, i.e., medical data cannot be
transferred outside. However, most current transfer learning
and domain adaptation algorithms need to access the original
training data with annotation in the source domain [15]. It’s
hard to access the original pathological images and transfer
their trained model to other pathological image types.

Taking the challenges above into account, this paper pro-
poses an effective and simple framework for cross-domain
segmentation of cells towards different tissues and medical
centers. Notably, we first apply a fully-supervised cell seg-
mentation network on the source domain. Then we simply
employ the trained fully-supervised model on the pathological
images of the target domain for further task-specific fine-
tuning. We demonstrate that different layers in the network
perform various functions during the domain adaptation of cell
segmentation. The framework can achieve excellent perfor-
mance on the domain adaptation of cell segmentation by fixing
and tuning different layers in a self-supervised manner. The
contribution of this paper can be summarized in four aspects:

1) To the best of our knowledge, this is the first work
that focuses on the source-free domain adaptation of patho-
logical cell segmentation, crossing different tissues and

multiple medical centers without accessing original source
datasets;

2) In the framework, we propose a simple but effective
solution to adapt the original cell segmentation model on
different target-specific pathological tissues, i.e., fine-tuning
the pre-trained model on batch normalization layers along with
the final classification layer in a self-supervised manner;

3) Two constraint terms are introduced in the self-supervised
pipeline on both local and global levels to well predict the
edges of pathological cells;

4) Extensive and comprehensive experiments are carried
out on three pathological datasets from different tissue and
cell types, demonstrating effective and superior performance
in comparison with other domain adaptation methods.

The following of this paper is organized as follows:
Section II briefly reviews related works of cell segmen-
tation and domain adaptation. Section III provides details
of the proposed cell segmentation framework of source-free
self-supervised domain adaptation, followed by experimental
results and ablation studies in Section IV. Finally, Section V
concludes the paper and discusses future works.

II. RELATED WORKS

A. Cell Segmentation

Before deep learning methods were used in cell segmenta-
tion, there are plenty of traditional segmentation methods [16],
[17] widely used in this field, such as global threshold
methods [18], [19], [20], [21], Watershed Transform [22],
[23], [24], [25], clustering [26], [27], [28], [29], graph-based
methods [30], [31], [32], [33], and pixel-level methods [34].
Nowadays, cell segmentation in histopathology images has
been extensively studied with a variety of deep learning
methods. Inspired by the development of Fully Convolutional
Networks (FCN) [35], a variety of deep learning methods
are proposed in the segmentation field, such as U-Net [36],
DeepLab [37], and UNet++ [38]. Naturally, many researchers
applied these methods to cell segmentation tasks and achieved
good results. For example, Janssens et al. [2] applied a
multiclass SVM [39] classifier that classifies segments into
three categories to cell segmentation on H&E-stained [40]
skeletal muscle images.

However, these methods are not specifically modified for the
cell segmentation task as they did not consider the difference
between cell segmentation and normal semantic segmentation
methods. For example, the cells’ property of cell adhesion
makes it challenging to differentiate and segment a single
cell from others. To address this problem, Chen et al. [4]
proposed a deep contour-aware network (DCAN) to establish
better segmentation by a multi-task learning framework, which
learns probability maps along with precise contours in a
single network at the same time and combines them to get
the final predictions. Sadanandan et al. [41] proposed an
approach for the creation of ground truth for the segmentation
of bright-field images of cultured cells based on end-point
fluorescent staining. They introduced DeLTA (Deep Learning
for Time-lapse Analysis), an image processing tool that uses
two U-Net deep learning models consecutively to first segment
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cells in microscopy images and then perform tracking and
lineage reconstruction. Lal et al. [42] proposed a method that
uses a network formulated as a Triple U-Net [36] structure
that includes an RGB branch, a Hematoxylin branch, and
a Segmentation branch. Multiple competitions are also held
to organize researchers to overcome problems in this field,
including the data science bowl in 2018 [7] and MoNuSeg
(Multi-organ nuclei segmentation challenge) [8]. Moreover,
with the development of segmentation methods, some seg-
mentation tools are also proposed to help non-experts to do
segmentation [43].

Despite the above fully supervised methods could indeed
do well in many pathological image datasets. However, well-
annotated datasets need a lot of labor-intensive labeling work.
That’s why the amount of cell segmentation datasets is
extremely limited in clinical diagnosis. Therefore, the appli-
cation of these fully supervised methods is restricted. Accord-
ingly, researchers start to work on self-supervised methods
for this problem, like Janssens’s [2] method. They used a
support vector machine (SVM) classifier [39] and a weak
edge enhancement operator (WEEO) to achieve segmentation
without any label. However, the performance of these methods
is far behind the supervised methods.

B. Domain Adaptation
1) Self-Supervised Domain Adaptation: Under the hypothe-

sis of the source domain and the target domain having the
same feature space, domain adaptation methods have been
used in the cell segmentation field. Currently, the existing
domain adaptation methods for segmentation can be roughly
categorized into adversarial learning-based methods and self-
supervised learning-based methods. Liu et al. [15] proposed a
method based on Cycada [44] which adds a task re-weighting
mechanism along with a nuclei inpainting mechanism to
improve the performance of the framework on data from dif-
ferent organs. However, these self-supervised methods’ perfor-
mances still have a long way to go compared with methods that
use both labeled and unlabeled data like domain adaptation.
Some self-supervised domain adaptation approaches for cell
segmentation have been proposed. Vu et al. [45] proposed
a method that addresses the task of self-supervised domain
adaptation with losses based on the entropy of the pixel-
wise predictions and uses entropy loss and adversarial loss,
respectively. Haq et al. [5] proposed a framework based on
GAN [6] along with a reconstruction network to do domain
adaptation in different organs.

Regarding self-supervised-learning-based methods, Yang
et al. [46] proposed a method that uses a simple Fourier
Transform and its inverse, simplifying the domain adaptation
training and achieving good results in semantic segmentation.
Even though the above methods have already considered
different datasets and obtained well-performed results, there
are still multiple challenges in cell segmentation. Usually,
domain adaptation methods need full access to the source
domain while training, which causes the problem that these
methods typically lack data safety and may not satisfy the
practical need in actual production.

2) Semi-Supervised Domain Adaptation: As additional anno-
tated data is typically used in actual domain adaptation
scenarios to improve the reliability of segmentation predic-
tion, semi-supervised are proposed by using limited labels
in the target domain [47], [48], [49], [50], [51], [52],
[53], [54]. These methods can achieve better results with
a small amount of manual labeling work. For instance,
Tarvainen et al. [51] proposed the mean-teacher method,
which uses two models updated by using consistency cost
between them to learn in a semi-supervised way. Cui et al. [52]
applied the mean-teacher method on semi-supervised brain
lesion segmentation tasks and achieved good performance.
Hung et al. [55] provided a semi-supervised domain adap-
tation method that uses GAN [6] method. Additionally,
Wang et al. [53] proposed the Alleviating Semantic-level Shift
(ASS) method, which augments the synthetic source data with
annotated samples from the target domain for semi-supervised
domain adaptation. More recently, Li et al. [54] intro-
duced a dual-teacher framework that exploits the intra-domain
and inter-domain knowledge for semi-supervised domain
adaptation.

3) Source-Free Domain Adaptation: For the domain adapta-
tion scenario when data from source domains are not acces-
sible, researchers proposed methods for source-free domain
adaptation. For example, Liu et al. [56] established a
source-free domain adaptation method relying on the entropy
minimization method and uses the exponential momentum
decay scheme and the transferability adaptive high-order statis-
tics consistency loss to improve the methods’ performance.
Wang et al. [57] proposed a framework that separates the
training step on the source and target domain by freezing
the network’s parameters except for the batch normalization
layers. Inspired by Tent [57], Hu et al. [58] extended it
to the medical image segmentation task by combining the
regional nuclear-norm and contour regularization. However,
this method only uses a simple entropy minimization loss
without considering the consistency of the target domain.
Fu et al. [59] proposed a method that uses regularization
constraints for source-free transfer learning on detection and
recognition tasks. Chen et al. [60] proposed a method based
on denoised pseudo-labeling. By adding supervision to the
pseudo label generating method, the method could improve its
performance on source-free domain adaptation. Hou et al. [61]
proposed a source-free domain adaptive segmentation frame-
work that uses entropic objective loss for implicitly aligning
the features and a bi-directional self-training strategy to gen-
erate pseudo source domain-style images by learning from
the knowledge difference between the source model and the
target model. Additionally, Fleuret et al. [62] trained the target
domain by using the pseudo images generated by the model
trained on the source and using both the prediction and
the noise generated by two networks with the same sharing
encoder to learn information from. However, none of the
source-free domain adaptation methods are specially designed
for the segmentation of pathological cells under the practical
demands of cross-tissue label limitations and medical center
data privacy.
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Fig. 1. Overview of the proposed framework towards source-free cross-
domain histopathological cell segmentation via target-specific finetuning.
Source images are only used for training the fully-supervised segmen-
tation network. In training target images, network parameters are only
updated in batch normalization layers and convolutional classification
layers, in a self-supervised manner with consistency in both global
pathological images and local pixel-level cells.

III. METHODOLOGY

A. Overview
The complete framework is shown in Fig. 1. We use a

CNN-based segmentation network (e.g., U-Net [36]) as our
framework’s backbone due to their good performances on
existing cell segmentation tasks. We only use the model trained
on the source domain and the target images to do domain adap-
tation by finetuning the batch normalization layers’ and final
classification layer’s parameters by applying self-supervised
methods and data augmentation methods.

1) Formulation: We aim to develop a source-data-free
domain adaptive cell segmentation with only a pre-trained
model from the source domain in this paper. Specifically,
we have ns labeled images {x i

s, yi
s}

ns
i=1 from the source domain

Ds and nt unlabeled images {x i
t }

nt
i=1 from the target domain

Dt , where x i
s ∈ Xs , yi

s ∈ Ys , and x i
t ∈ X t . And the

size of the histopathological image patches is presented as
H × W × 3, while the pixel-wise ground-truth label’s size is
H × W × 1. Our goal is to learn a network ft that could
achieve accurate cell segmentation results on target images
Ŷt = ft (X t ) by domain adaptation from the fully-supervised
segmentation network fs trained on the source domain. In our
framework, we only access target images {x i

t }
nt
i=1 and the

trained source segmentation network fs .
The source segmentation network takes images Xs as input

and the segmentation predictions Ŷs = fs(Xs) of the same
width and height as output. We train the source segmen-
tation network fs to generate the predictions Ŷs through
a fully-supervised segmentation network while using Ys as
the ground-truth labels of the source domain. For the target
domain, we freeze all parameters except for batch normaliza-
tion layers’ and the output convolution layer’s in the trained
fs to make the network could be trained in the normalization
part and the output convolutional part. We consider it as ft
and use images X t as the input and Ŷt = ft (X t ) as the output.

B. Fully-Supervised Training on the Source Domain
In the source domain, we use a traditional fully-supervised

method to train the model for the prediction of the

histopathological images’ pixel-level cell segmentation results.
As pathological images generally have smaller foreground
than semantic segmentation tasks in nature images, the dice-
coefficient loss is more effective than the binary cross-entropy
loss in segmentation tasks on pathological images. Accord-
ingly, we use the dice-coefficient loss as our segmentation loss:

Ldice =1−
2Y ′

s .Ŷ
′
s

Y ′
s + Ŷ ′

s
(1)

where Y ′
s and Ŷ ′

s are flatten Ys and Ŷs respectively. After
training the network, we only use the trained deep model
in further operation to guarantee data privacy in the source
domain.

C. Domain Adaptation With Target-Specific Finetuning

When we put the target images into the network, the output
may not good as the fact that the source and target domain have
different domain centers. And what we need to do in this part
is precisely move the target domain center and make it closer
to the source domain. Here, we develop a self-supervised
method to finetune the model.

1) Entropy and Nuclear-Norm for Cell Segmentation: Since
there is a domain offset between the source domain and the
target domain, the parameters of the backbone need to be fine-
tuned to fit the target domain. Entropy minimization is widely
used in semi-supervised learning to utilize the unlabeled data
[63]. In this part, the entropy of the output Ŷt is minimized,
as in previous semi-supervised and domain adaptation meth-
ods. By doing so, the results could have smaller entropy,
which is shown as the pixels are clustered to the two sides
of the prediction. This encourages the model to learn from
unlabeled pixels by min-max the intra/inter-class discrepancy,
maximizing the difference of the inter-class and making the
intra-class prediction results more confident.

As normalization could scale and shift the features’ distri-
bution while not changing the convolution kernels that extract
the feature, for the network’s stability and efficiency, only
parameters in the batch normalization layers are updated to
alleviate the domain adaptation problem without accessing
source labels. The network’s output classification layer is also
updated as it may be more sensitive to the changes in the input
images’ distribution. According to Fig.1, since many layers
(e.g., later convolutional layers) include high-dimensional fea-
tures for pixel-level segmentation, the fine-tuned deep models
are generally more sensitive to these high-dimensional features
when transferring from source to target domain, which may
lead to bias for pixel-level segmentation. On the other hand,
batch-norm layers tune model parameters in linear and low-
dimensional space. In each convolutional module, including
a convolutional layer, a batch-norm layer, and a ReLU layer,
the output of batch-norm layers is set as the input of the next
layer’s convolution. This strategy gradually fine-tunes model
parameters without affecting high-dimensional inference. Sim-
ilarly, the final classification layers tune model parameters
by mapping high-dimensional features to low-dimensional
prediction matrices.
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In practice, we measure the task predictions by using
Shannon entropy [64], which could be presented as H(Ŷt ) =

p(Ŷt )logp(Ŷt ) for our two categories segmentation task. As a
measure of the task, H(Ŷt = ft (X t )) is a function of the
network’s parameters and we could minimize it by fine-tuning
it as a loss function as follows:

Lem = −
1

H ∗ W

H∑
h=0

W∑
w=0

Ŷt log(Ŷt ) (2)

where H and W are the predictions’ sizes.
Although the entropy minimization loss has adjusted the

model to fit the target domain, it still doesn’t consider the
information that can be directly extracted from the target
domain. Accordingly, we introduce batch nuclear-norm max-
imization method [65] which maximizes nuclear-norm to
improve both discriminability and diversity of the prediction.
The mathematical formulation is as follows:

Lbnm = −||S( ft (X t ))||∗ (3)

where S presents the singular value matrix, || ||∗ presents
the nuclear-norm calculation. By applying the entropy mini-
mization and the diversity, the prediction distribution can be
more specific. And the results may be more confident for
segmentation on the target domain.

2) Global and Local Consistency for Cell Segmentation: We
use entropy and nuclear-norm to measure our predictions.
However, our framework still lacks consistency as the entropy
and nuclear-norm only learn from pixel-level information and
couldn’t put the problem into the whole image. According
to former methods in unsupervised learning [48], [51], [66],
the data augmentation methods like the rotation method could
guide the framework’s global consistency without using labels,
we introduce auxiliary rotation loss to guide the framework’s
global consistency. This loss is based on the rotation con-
sistency, i.e., the prediction of the rotated images should be
consistent with the rotated prediction of the original images.
However, this auxiliary rotation loss still cannot alleviate the
problem that mini gaps or small fake positive regions for
this region may exist whether rotated or not. Then we intro-
duce conditional random field (CRF) loss to our framework
to restrain the predictions’ local consistency, which could
consider the pixels’ surrounding areas’ prediction to give
predictions. In this part, we minimize the mean square error
between the rotated prediction Ŷt,r and the origin prediction
T̂t as our auxiliary rotation loss as follows:

Lrot = ||Ŷt,r − Ŷt ||
2 (4)

where r presents the rotation operation, which could also be
replaced with other data augmentation methods.

As cells in whole slide images always have different styles
from tissue fluid around them and relatively have local sim-
ilarity, we can use this local consistency to help the domain
adaptation. In this part, we employ a gated conditional random
field loss [67] to minimize the performance gap between the
original target images and the cell segmentation prediction
by using the same nature of both the source and the target
domain. The former usages of this gated CRF loss function

Fig. 2. We use the conditional random field as a learnable loss to
maintain the results’ local consistency. From left to right: a pathological
image patch, a single cell image, a 3 × 3 pixel matrix with different
intensities, pixel-level prediction of the center pixel based on surrounding
8 pixels.

are mainly employed on weakly supervised domain adaptation
tasks for extracting knowledge learned from weak annotation
to accurate spacial level-related pixel predictions. Unlike the
above common usages, we employ this method in a source-
free domain adaptation task for better adjusting the prediction
results. According to the property of CRF in learning local
spatial relativity [68], every spatial level-related pixel (e.g.,
each pixel of a 3×3 matrix in Fig.2) is weighted for pixel-level
segmentation predictions. Especially, this strategy can better
alleviate predictions of corners and outliers when tackling the
gap between the source and target domain. Meanwhile, the
CRF loss could also learn from the images’ local consistency
and prevent overfitting [69] of the “fake” label methods. Fig. 2
shows how it works. To employ the CRF in a loss function,
we first define the energy term of labeling classes i and j at
positions a and b, as:

ψa,b(i, j) = µ(i, j)Kab (5)

Kab =

P∑
p=1

w(p)k(p)( f (p)a f (p)b ) (6)

where ψa,b denotes the pairwise potentials, and µ is a generic
class compatibility matrix of size C × C , and here C is 1 as
we are working on a two categories segmentation. Then here
follows a mixture of P kernels k(p)(·, ·) for a pair of positions
with weights w(p). The feature vector f (p)a is specific to
the p-th kernel and doesn’t depend on the prediction. And
in practice, it is made up of position coordinates or input
modalities like RGB or depth. Then we use Gaussian kernels
with kernel-specific bandwidth parameters σ (p) and Pott’s
class compatibility model:

k(p)( f (p)a , f (p)b ) = exp{−
1
2
|

f (p)a − f (p)b

σ (p)
|
2
} (7)

µ(i, j) =

{
0, i f i = j
1, otherwise.

(8)

We can see that given the feature-wise similarity, and if the
labeling of classes at two positions is different, its value is
higher. Meanwhile, the color of the pixel should also contribute
to the outputs. We use pixels’ distance and color to define
f (p)a and f (p)b . And We can write the energy of prediction Ŷt
at positions a and b, and the total energy of the prediction Ŷt ,
where every pixel of the image is related to each other:

ψa,b(Ŷt ) =

∑
i, j∈[0,C]

ψa,b(i, j)Ŷt,a(i, j)Ŷt,a(i)Ŷt,b( j) (9)
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Fig. 3. Sample images of three datasets.

9(Ŷt ) =

N∑
a=1

N∑
b=1 b ̸=a

ψa,b(Ŷt ) (10)

In Ŷt,a(i, j)Ŷt,a(i)Ŷt,b( j), the predictions represent that the
selected points a and b’s outputs are i and j respectively. These
three items should be 1 when a and b are selected. For any
position a, if we assume that all kernels are Gaussian and
feature vectors k(p) contain position coordinates, the pairwise
energy of jointly labeling a and b would decrease with the
distance from a. Meanwhile, a CRF loss with a long distance
from a to b may bring great computational challenges to
the task and may not be beneficial to constrain the local
consistency. Thus, we limit the range of summation of b
to a local neighborhood �(a) characterized by a function of
the acceptable loss of signal ϵ and kernel bandwidth σ (p).
We define the two-dimensional local neighborhood window
with radius r of the position a(ax , ay)(ax and ay are a’s
coordinates) as �r (a) = [ax − r, ax + r ] × [ay − r, ay + r ].
Then the total energy becomes:

Lcr f = 9(Ŷt ) =

N∑
a=1

∑
b∈�r (a)

ψa,b(Ŷt ) (11)

By the above loss function, the CRF is embedded into the
network, which makes the local influences propagate to the
whole image while training.

Overall, we optimize the following total loss when training
our framework on the target domain:

Losstarget = Lem + Lbnm + φrot Lrot + φcr f Lcr f (12)

where φrot = k ∗ e−(−i+E)2 , in which i presents the epoch,
k scales the maximum value of the weighting function, and
E defines when the weight comes to the peak. In our exper-
iments, we set k to 1.0 and E to 10 based on experience.
And φcr f = αi, i f φcr f < 1.0, in which i presents the
epoch, α presents the growth speed of the weight. We set
α to 0.05 based on our experiences.

IV. EXPERIMENTS

A. Datasets
We use three pathological image datasets in our experi-

ments. The KIRC dataset was released by Irshad et al. [11] and
consists of 463 images of 400 × 400 pixel size. Pathological
cells were labeled by pathologists and came from whole
slide images (WSI) of Kidney Renal Clear cell carcinoma
(KIRC). Naylor et al. [12] released a dataset of 50 images
of 512×512 pixel size that came from whole slides of Triple-
Negative Breast Cancer Cell (TNBC). We refer to it as the

TABLE I
LIST OF NUMBER, SIZE, AND SCALE OF IMAGES OF THREE DATASETS,

I.E., TCIA [13], TNBC [12], AND KIRC [11]

TNBC dataset here. Hou et al. [13] released the TCIA dataset
that consists of 1356 images of 256×256 pixel size from slides
of 14 different cancer types. We only use 97 images from
Stomach adenocarcinoma (STAD) in the TCIA dataset for
our experiments, focusing on multi-center domain adaptation
across different tissues. To simplify the illustration, we denote
the source domain dataset A and the target domain dataset B
as A->B.

As presented in Fig. 3, images in these three datasets
demonstrate significant domain gaps. The TNBC dataset’s
stain style is quite different from the other two datasets,
indicating stain differences among these datasets. We also
observe that the images in TCIA are slightly more blurred
than those in the other two datasets, indicating differences in
image clarity. Furthermore, we notice that the tissues around
the cells differ significantly in shape and color. Moreover, since
the images come from different tissues in different datasets,
there is a clear domain gap between the information in each
dataset.

B. Implement Details

1) Settings: In our framework, we use U-Net [36] as
our segmentation network. We use 80% of each dataset’s
images for training, 10% for validation, and 10% for eval-
uation. We train on different domain adaptation combina-
tions of TNBC->KIRC, TCIA->KIRC, TNBC->TCIA, and
TCIA->TNBC, which enables us to have a comprehensive
evaluation of the performance on different domain adaptation
situations. During the training, we resize all the input images
to 512×512. We employ Adam optimizer [70] to optimize the
losses with learning rates of 0.001, a weight decay of 0.001,
a batch size of 8 for source data, and 4 for the target data
when training on the source domain and the target domain,
respectively. As for the CRF loss function, we choose a
kernel size of 5 × 5 to get the best performance for the cell
segmentation task. We train 400 epochs on the source domain
and 200 epochs on the target domain. And the network always
reaches its best performance within 50 epochs on the target
domain. All experiments are carried out by using the Pytorch
framework on a Linux system with 2 RTX2080Ti graphic
cards and take about 16 GB of memory running for 8 hours.

2) Evaluation Metrics: We follow previous work to report
multiple metrics which contain the Dice metric to verify
the prediction’s accuracy performance. Meanwhile, we also
use 95% Hausdorff Distance (HD95) and Average Symmetric
Surface Distance (ASSD) [71] to evaluate the shape difference
between the ground truth and the prediction. Unlike the Dice
metric, the lower of the HD95 and ASSD metrics indicate
a more minor difference between the ground truth and the
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TABLE II
QUANTITATIVE RESULTS OF DEEP MODELS WHEN ONLY FINETUNE

PARAMETERS IN SPECIFIC LAYERS PARAMETERS, USING THE

TNBC [12] DATASET AS THE SOURCE DOMAIN

prediction. What’s more, we also use the AJI metric to
verify the prediction’s instance-level performance. Moreover,
we report results from all the above domain adaptation settings
respectively to find out the difference in the performance of
these methods. We calculate both the variance and the average
of the metrics to get a comprehensive understanding of the
performance.

C. Ablation Study

To figure out which layer’s parameters have a positive effect
on target domain adaptation, we finetune different layers’
parameters in the backbone with only an entropy minimization
loss function. Accordingly, we presented Table II for testing
our backbone’s different structures’ performances to prove
our finetuning setting when applying domain adaptation. All
experiments use the same backbone trained on the source
domain (TNBC dataset) and don’t use any target label while
implementing domain adaptation. We only finetune one layer’s
parameters in a single experiment to control variables and use
U-Net as our backbone.

As is shown in Table II, the performances are significantly
better than others when finetuning on the Batch Normalization
layers and the final classification convolution layer. When fine-
tuning on the convolution layers, the results of the framework
turned out to be even worse than straightly applying the model
trained on the source domain to the target domain without
domain adaptation. Besides, it turns out that the metrics
drop down fast to zero when only finetuning convolution
layers’ parameters. Accordingly, we set our framework by
only finetuning the parameters of the Batch Normalization
layers and final classification convolution layer when applying
domain adaptation.

After comparing our framework with other domain adap-
tation methods, we have a clear vision of our framework’s
performance. But we still lack a clear understanding of
the contribution of our framework’s different single parts.
Accordingly, we did ablation experiments by deleting every
component from our framework to determine if every com-
ponent could have contributed to the whole framework. And
the results show that with every single component cut from
our framework, the performance drops below our framework.

TABLE III
THE METRIC RESULTS FOR ABLATION EXPERIMENTS IN DOMAIN

ADAPTATION FROM TNBC TO TCIA DATASET

TABLE IV
THE METRIC RESULTS FOR ABLATION EXPERIMENTS IN DOMAIN

ADAPTATION FROM TNBC TO KIRC DATASET

TABLE V
THE METRIC RESULTS FOR ABLATION EXPERIMENTS IN DOMAIN

ADAPTATION FROM TCIA TO TNBC DATASET

Especially when deleting the CRF [67] or the auxiliary rotation
loss, the performance of Dice, HD95, ASSD, and AJI all drops
a lot due to the lack of consistency constraint, which further
proves our local and global consistency’s efficiency on source-
free cell segmentation tasks across different tissues.

From Table III to Table VI, we provided the ablation study
in validating the effectiveness of each proposed component,
i.e., the original Tent method [57], our framework without and
with only fine-tuning the final classification layer, fine-tuning
the BN layers, gated CRF module and rotation consistency
module. Besides, we also provide the results of lower and
upper bound in the domain adaptation, i.e., predicting target
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TABLE VI
THE METRIC RESULTS FOR ABLATION EXPERIMENTS IN DOMAIN

ADAPTATION FROM TCIA TO KIRC DATASET

data directly using the model trained on source data, and
predicting target data using the model trained on target data.
As shown in these tables, all the experiments have improved
over the baseline, where our framework turns out to work
better than those experiments that delete a single component
from ours. These results could prove that every part in our
framework could contribute to the final performance and has
an improvement compared with the Tent [57] method, which
is set as our baseline. Meanwhile, we also did experiments
on the situation that only apply one loss function among
BNM, CRF, and rotation loss, which could help to validate the
effectiveness of every single component. BNM could assist the
widely used Entropy Minimization method to get more specific
self-supervised restraint. Meanwhile, the CRF and rotation
component could contribute to more reliable knowledge from
the target domain data as long as limited domain gaps, leading
to more effective knowledge learned from the source domain.
In our cell segmentation task, the condition is satisfied as
it turns out that with every single component added to the
framework, our framework could get enhanced performance
compared with the baseline.

Contributing to the cell segmentation in different source-
free domain adaptation cases (Table III, Table IV, Table V,
Table VI), the introduced CRF component also validates the
effectiveness of the local consistency on the cell segmentation
task. Accordingly, unlike most existing works that introduce
global constraints in reducing the domain gap, the local
constraint could also contribute to the domain adaptive seg-
mentation task, which is rarely discussed before.

However, we can also find that some results from our
framework are not the best when evaluated in ASSD and
HD95 metrics (like in TNBC->KIRC) as the results are very
close to each other. And our framework also does well when
using ResNet34 [72] as the backbone, which results in better
metric results than straight using the trained backbone to
do segmentation. Accordingly, our framework shows a stable
performance on different backbones.

D. Comparison With State-of-the-Art Methods

Besides the ablation study, the comparison of the pro-
posed framework with other state-of-the-art methods is also

required, especially with other source-free methods. Accord-
ingly, we compare the performance with other related methods
including 3 UDA methods and 4 source-free methods. We
proposed Table VII, Table VIII, Table IX, and Table X for the
performance of other methods compared with ours in different
domains.

1) Compared With Self-Supervised Domain Adaptation Meth-
ods: In this part, we validate our framework and other self-
supervised domain adaptation methods, which have been
presented in recent years and perform well in segmentation
tasks. Results from CBST, CellSeg, Tent, Advent, and Uncer-
tainDA [62] methods on cross-tissue cell segmentation domain
adaptation task are provided for the evaluation as follows:

CBST [73] is a widely used class-balanced self-training
domain adaptation framework accomplished by generating
pseudo labels according to the prediction of the target images.
This method needs full access to the source domain during the
domain adaptation process and performs badly on multi-tissue
cell segmentation tasks.

CellSeg [5] is another domain adaptation method that could
not protect the source data privacy as it uses a generative
adversarial network along with a reconstruction network to
make the target domain outputs consistent to both the source
domain and also the target images. And it achieves a better
performance on cell segmentation problems than traditional
domain adaptation methods that only use GAN [6] framework.

Advent [45] also doesn’t consider the data privacy problem
and uses a generative adversarial network. However, it uses
the discriminator differently from CellSeg as it uses a back-
bone with two branches that do the same task. It uses one
discriminator to discriminate both branches’ outputs to bring
the two branches’ supervision into the whole framework.

2) Compared With Source-Free Domain Adaptation Methods:
Meanwhile, as our framework is based on a source-free
method, it is reasonable to compare other state-of-the-art
source-free methods to the proposed framework. Accordingly,
we choose four source-free methods to do the comparison as
follows:

UncertainDA [62] is a method using only a model trained
on the source domain while doing the domain adaptation,
which means that they could prevent source data privacy
problems. It uses two networks with the same sharing encoder
and different decoders to generate both the prediction and the
noise. When doing domain adaptation, the model trained on
the source domain is used to generate pseudo labels of target
images, which are used to restrict the target’s prediction and
the noise generated by another decoder.

Tent [57] method straightly uses the model trained on
the source domain and freezes its parameters of all layers
except batch normalization layers to train it with entropy
minimization loss on the target domain, by which the method
could do domain adaptation without donating the source data.

SFDA [60] method is based on denoised pseudo-labeling.
It uses two complementary pixel-level and class-level denois-
ing schemes to provide more discriminative and less noisy
supervision for source-free model adaptation tasks. By adding
these supervisions to the pseudo generating method, the
method could efficiently do source-free domain adaptation.
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Fig. 4. Visualization results for segmentation from TCIA to TNBC. The
top three rows are different images randomly selected from the target
domain. From left to right are the results of different comparison methods.
We also presents enlarged regions of the third row in the bottom row.

TABLE VII
QUANTITATIVE EVALUATION OF DIFFERENT METHODS IN DOMAIN

ADAPTATION FROM TNBC TO TCIA DATASET

ADOS [56] method establishes source-free domain adapta-
tion relying on a pre-trained segmentation model with BN,
which is also based on the entropy minimization method.
To improve the methods’ performance, an exponential momen-
tum decay scheme and a transferability adaptive high-order
statistics consistency loss are added to the framework.

In Table VII, Table VIII, Table IX, and Table X, we show
the results of all the segmentation methods above in different
datasets settings and specify whether a method uses source
data or not. We also show the predictions of different methods
on the domain adaptation of TCIA->TNBC in Fig. 4, where
we can see that our framework’s prediction is better than others
as it has a more precise segmentation and a contour closer to
the ground truth in partial regions.

TNBC->TCIA: As it is shown in Table VII, when
using the TNBC dataset as the source domain and the TCIA
dataset as the target domain, our framework reaches the best
performance in the experiments that do not use source data
while using U-Net or ResNet34 as the backbone. However,
our framework still cannot reach the level of methods that use
source data when using U-Net as the backbone.

TCIA->TNBC: As shown in Table VIII, when reversing
the datasets by using the TCIA dataset as the source domain
and the TNBC dataset as the target domain, our framework
reaches the best performance metrics in all source-free meth-
ods and among all methods except the CellSeg method, which
has full access to the source data.

TNBC->KIRC: When we use the TNBC dataset as the
source domain and the KIRC dataset as the target domain, our
framework reaches the best performance in all metrics among
all methods, even beat methods that use source data.

TCIA->KIRC: When we use the TCIA dataset as the
source domain and the KIRC dataset as the target domain, our
framework reaches the best performance again in all metrics

TABLE VIII
THE RESULT OF DIFFERENT METHODS IN DOMAIN ADAPTATION FROM

TCIA TO TNBC DATASET

TABLE IX
QUANTITATIVE EVALUATION OF DIFFERENT METHODS IN DOMAIN

ADAPTATION FROM TNBC TO KIRC DATASET

TABLE X
THE RESULT OF DIFFERENT METHODS IN DOMAIN ADAPTATION FROM

TCIA TO KIRC DATASET

among all methods except for the ASSD and HD95 metric
lower than some methods.

Accordingly, we can see that all models using domain adap-
tation methods have a significant improvement over the single
backbone (lower bound), as well as lower performance than
the fully supervised method trained on target data with labels.
Meanwhile, the results of the domain adaptation methods also
fall beyond the experiments that directly use the U-Net and
target domain data to do segmentation training (upper bound).
For instance, our framework could reach a level that could
compete with the methods that use the source data. In some
data settings, our framework could even beat those methods
using the source data a lot in all metrics. These results show
that having full access to the source data may not help too
much for domain adaptation tasks like this different tissues’
multiple center problem. Our framework beats the Tent method
and other source-free methods, which shows that the global
and local consistency we proposed is useful for source-free
cell segmentation problems even if the data is from different
tissues and organs. What’s more, our framework also performs
well when using ResNet34 [72] as our backbone compared
to the direct usage of this backbone, which proves that our
framework also has a good versatility that could take effect
when being implemented on different kinds of backbones.
However, we can also find that in the data settings that
have a more significant domain shift (like TCIA->TNBC
and TNBC->TCIA), our framework always has a worse
performance as the information that the model learned is very
limited.
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TABLE XI
THE METRIC RESULTS FOR EXPERIMENTS THAT USE DIFFERENT KIND

OF DATA AUGMENTATION METHOD IN DOMAIN ADAPTATION FROM

KIRC TO TCIA AND TNBC DATASET

TABLE XII
THE METRIC RESULTS FOR EXPERIMENTS THAT USE MULTI

DIFFERENT KINDS OF DATA AUGMENTATION METHODS IN DOMAIN

ADAPTATION FROM KIRC TO TCIA AND TNBC DATASET

V. DISCUSSION

A. Comparison of Different Data Augmentations

In our framework, we use rotation as the global consistency
in our loss function, which could be also considered a data
augmentation method. There are also lots of other kinds of
data augmentation methods that may perform well in solving
the segmentation tasks. To simplify our framework and avoid
the overusing of data augmentation in the contribution of the
final performance, we use only one kind of data augmentation
strategy that has the best performance compared to other
strategies.

As shown in Table XI, we compared our global consis-
tency method with other regular data augmentation methods.
The results show that the rotation method achieved the best
performance among the three augmentation methods that we
tested. In this paper, we choose the rotation method as our
global consistency to extract information from the original
pathological images. Moreover, with the purpose of a better
combination of multiple kinds of data augmentation meth-
ods, we did further experiments and showed the results in
Table XII. Accordingly, compared to the experiments that use
only one single data augmentation method, the framework’s
performance shows a decrease in every situation that uses
multiple data augmentation methods. These results indicate
that multiple data augmentation methods may conflict with
learning knowledge from the target domain.

B. Robustness Analysis

To verify our framework’s robustness, we compare it with
other source-free methods on the domain adaptation from
KIRC to TCIA and TNBC datasets. As shown in Table XIII
and Table XIV, our framework stay in the best performance for
the domain adaptation from KIRC to TCIA and TNBC dataset,
which could prove that our framework works effectively on the
domain adaptation for different scenarios. These results mainly
benefited from the CNNs framework’s stability and our local
and global consistency restrain, which enables the framework
to learn data properties from the target dataset to achieve
superior performance. Meanwhile, the situation in this case
that transfers information from a large dataset (e.g., KIRC) to
a small one (e.g., TNBC and TCIA) is similar to the practical
situation.

TABLE XIII
THE METRIC RESULTS FOR EXPERIMENTS THAT USE DIFFERENT

KINDS OF SOURCE-FREE DOMAIN ADAPTATION METHODS IN DOMAIN

ADAPTATION FROM KIRC TO TCIA DATASET

TABLE XIV
THE METRIC RESULTS FOR EXPERIMENTS THAT USE DIFFERENT

KINDS OF SOURCE-FREE DOMAIN ADAPTATION METHODS IN DOMAIN

ADAPTATION FROM KIRC TO TNBC DATASET

Fig. 5. Sensitivity experimental results of our framework, which include
the DICE and ASSD scores under different hyper-parameter settings of
α and k.

C. Sensibility Analysis of Parameters
Inside our framework, some hyper-parameters may influ-

ence the framework’s performance. To verify the sensitivity
of these hyper-parameters, we did experiments on two hyper-
parameters that have the most significance in the framework.
As shown in Fig. 5, the result’s score shows the sensitivity
among different values of the hyper-parameters. Accordingly,
the results show Gaussian-like distribution, which could prove
the sensitivity and properties of our hyper-parameter settings.

D. Potential Use Cases
Our proposed framework can achieve excellent domain

adaptation without accessing data from the source domain.
This advantage is especially suitable for clinical applications,
where most raw data cannot be accessed among different
medical centers due to data privacy issues. Given the pre-
trained weights from the source domain data, our framework
achieves source-free domain adaptation by fine-tuning specific
layers and global and local consistency. Similar to most of
the source-free domain adaptation methods [74], our frame-
work is based on a reliable pre-trained model on the source
domain, where the domain gap is not too large. In addition
to the source-free domain adaptation, some methods focus
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on extreme conditions that even cannot access the pre-trained
model from the source domain, namely unsupervised black-
box model domain adaptation [75]. This kind of method may
not perform well on the domain adaptation, especially for
the domain adaptive cell segmentation task, where cells from
different tissues can be quite different with large domain gaps.

Although the proposed unsupervised framework can achieve
excellent performance compared with related domain adapta-
tion methods, there remains a significant gap to the fully super-
vised methods. In order to merge the cross-domain gap without
labor-intensive manual annotation on pixel-level cells, several
points can be studied in our future works. Firstly, we may
further integrate the current source-free domain adaptation
framework with semi-supervised learning, by introducing
a few annotated images from the target domain, where the
annotations can be either ground truth by users or automat-
ically computed pseudo labels. By introducing few annota-
tions, semi-supervised learning has been validated its superior
performance on multiple tasks [51], [52], [54]. Such a semi-
supervised manner is especially suitable in medical diagnostic
scenarios. Besides, as the diagnostic importance and diversities
in histopathological regions and cells can be different, the few
manual annotations on the target domain can be automatically
selected by active learning, where representative regions/cells
are then annotated to boost the semi-supervised domain adap-
tation framework. In addition, when processing histopatholog-
ical images from different tissues, types, and medical centers,
we found that the color and intensity differences are also
noticeable. Accordingly, neural style transfer networks can be
further investigated for histopathological images to merge the
gap between source and target domains.

VI. CONCLUSION

In this paper, we propose a novel self-supervised domain
adaptation method towards a source-free cell segmentation
task crossing different pathological tissues. The method does
not need to access the source data while implementing the
domain adaptation. Moreover, we improve the performance
by using global and local consistency in a self-supervised
pipeline, which can achieve better discriminability and diver-
sity by maximizing the nuclear-norm of the prediction. Our
framework demonstrates superior performance than related
state-of-the-arts on the domain adaptation of cell segmenta-
tion. In the future, we will investigate source-free domain
adaptation methods with semi-supervised learning, improving
the transfer learning performance and applying the method to
clinical diagnosis.
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