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A B S T R A C T

Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The
precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treat-
ment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance
on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited,
and high-quality benchmark datasets on this task are highly desirable for model development and evaluation.
To alleviate this problem, the SegRap2023 challenge was organized in conjunction with MICCAI2023 and
presented a large-scale benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT)
scans from 200 NPC patients, each with a pair of pre-aligned non-contrast and contrast-enhanced CT scans.
The challenge aimed to segment 45 OARs and 2 GTVs from the paired CT scans per patient, and received
10 and 11 complete submissions for the two tasks, respectively. In this paper, we detail the challenge and
analyze the solutions of all participants. The average Dice similarity coefficient scores for all submissions
ranged from 76.68% to 86.70%, and 70.42% to 73.44% for OARs and GTVs, respectively. We conclude that
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the segmentation of relatively large OARs is well-addressed, and more efforts are needed for GTVs and small
or thin OARs. The benchmark remains available at: https://segrap2023.grand-challenge.org.
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1. Introduction

1.1. Clinical background

NasoPharyngeal Carcinoma (NPC), a malignant tumor originating in
he nasopharyngeal region, is particularly prevalent in Southeast Asia
nd North Africa (Lee et al., 2015; Chua et al., 2016; Sun et al., 2019).

The primary treatment modality for NPC relies heavily on radiation
therapy, especially Intensity-Modulated Radiation Therapy (IMRT) (Xia
et al., 2000; Kam et al., 2003). In IMRT, the accurate delineation of
he Gross Tumor Volumes (GTVs) and the surrounding Organs-At-Risk
OARs) is crucial for treatment effectiveness. Accurately identifying the
arget area is essential to ensure that high doses of radiation precisely
over the tumor while protecting the adjacent normal tissues (Tang

et al., 2019). Proper delineation of the GTVs enhances local control
rates of the treatment and reduces the risk of recurrence. NPC is
located near several vital structures, such as the skull base, internal
carotid arteries, and optic nerves (Wang and Kang, 2021). Inaccurate
delineation may expose these OARs to unnecessarily high doses of
radiation, increasing the risk of acute and delayed radiation-induced
amage (Lin et al., 2019).

Accurate delineation of OARs and GTVs is a significant challenge for
junior radiation oncologists and automated delineation methods (Chen
et al., 2021). Firstly, the anatomical structure of the nasopharyngeal
egion is inherently complex, being near critical organs and neural
tructures such as the skull base, internal carotid arteries, and optic
erves. This complexity makes the accurate delineation of the target
rea and OARs extremely challenging and prone to errors (Tang et al.,

2019). Secondly, the tumor size, shape, and location vary among NPC
atients, coupled with individual anatomical differences, which further
omplicates the delineation process (Lee et al., 2018). Additionally,
he low contrast and ambiguous boundary between OAR or GTV and
ther soft tissues in CT images lead to difficulties in the delineation
f OAR and GTV, radiation oncologists usually require other modality
mages for complementary guidelines to perform delineation. More-
ver, the reliance on the experience and judgment of physicians for
elineating the target area and OARs introduces potential variability
nd subjectivity among different practitioners, potentially leading to
nconsistencies in treatment planning. In past clinical practices, the
elineation of OARs and GTVs in NPC was predominantly conducted by
xperienced radiation oncologists. However, according to the clinical
reatment guideline, each patient has more than 40 OARs and 2 GTVs
eed to be delineated accurately (Ye et al., 2022; Guo et al., 2020).

It requires the radiation oncologists to spend much time performing
elineation, increasing the annotator’s burden and patient waiting time.
t is desirable to develop efficient and accurate automatic segmentation
ools to assist and accelerate the clinical delineation workflow and
educe the annotator’s burden and patient waiting time.

1.2. Technical challenges

Deep learning-based segmentation methods have shown promising
performance on certain medical segmentation datasets, such as abdom-
nal organ segmentation (Luo et al., 2022a; Isensee et al., 2021; Gibson

et al., 2018; Bilic et al., 2023) and thoracic organ segmentation (Dong
t al., 2019; Feng et al., 2019). However, there remains a notable

scarcity of studies reporting automatic segmentation tools for OARs and
GTVs in NPC that achieve clinically applicable performance on large-
cale datasets. The automation of OAR and GTV segmentation remains
hallenging due to inherent characteristics, including size, shape, and
ocation variations among NPC patients, compounded by individual
2 
anatomical differences and ambiguous boundaries. Moreover, creating
nd annotating a large-scale, high-quality dataset for OAR and GTV

segmentation is a resource-intensive process, demanding both expertise
and time to generate accurate delineations. Consequently, there is still
a lack of large-scale and high-quality annotated datasets for developing
automatic segmentation models for NPC OARs and GTVs.

Recently, few studies have reported in detail the segmentation
results of GTVs and OARs of NPC (Liu et al., 2021; Lin et al., 2019;
Luo et al., 2023, 2022b; Liao et al., 2022; Ye et al., 2022; Guo et al.,
2020; Shi et al., 2022; Tang et al., 2019; Wu et al., 2024). Most
of them only focused on the segmentation of part of the OARs or
the GTVs of head and neck cancers. For example, Shi et al. (2022)
and Ye et al. (2022) evaluated the performance on 27 head OARs
nd 42 head and neck OARs, respectively. In addition, few works
nvestigated the model segmentation performance on multiple inputs,
uch as non-contrast or contrast-enhancement CT scans (Wang et al.,

2020; Oreiller et al., 2022). The limited number of OARs and using
single-modality in these existing works limited the performance and
clinical application of the segmentation models. Therefore, a large-scale
benchmark with exhausted and high-quality annotations and multiple
modalities is highly desired for boosting the development of OAR and
GTV segmentation models for the radiation treatment of NPC.

1.3. Contribution

To comprehensively evaluate the performance of state-of-the-art
(SOTA) algorithms for automatic OAR and GTV segmentation in the
radiation treatment planning of NPC, we organized the SegRap2023
challenge in conjunction with MICCAI2023. The key contributions of
this work can be summarized as three-fold. Firstly, we built the first
arge-scale public dataset of 200 NPC patients where each patient has
re-aligned non-contrast and contrast-enhanced CT scans with high-
uality manual annotations of 45 OARs and 2 GTVs. Secondly, the
egRap2023 challenge was successfully organized during MICCAI2023
ia the grand challenge platform which attracted a total of 387 teams
egistered during the model development phase. In the final evaluation
hase, 10 and 11 teams successfully submitted their solutions for the
ARs and GTVs tasks, respectively. Thirdly, we evaluated, ranked,

ummarized, analyzed, and discussed the results of all submissions.
he results demonstrated that the large-size OAR segmentation is well-
ddressed, and more attention needs to be paid to GTV and small-size or
hin-structure OAR segmentation. We believe this dataset and challenge
an bring benefits to the whole community.

This paper summarizes the SegRap2023 challenge and is organized
s follows. Section 2 reviews the existing datasets and methods for

OAR and GTV segmentation. Then, Section 3 presents the details of the
hallenge in the aspects of data collection and annotation, challenge
rganization and evaluation. Details of all submitted methods are il-
ustrated in Section 4. Afterwards, the analysis and description of the
esults are presented in Section 5. Finally, we conclude and discuss the
egRap2023 challenge in Section 6 and 7, respectively.

2. Related works

2.1. OAR segmentation in head and neck cancers

2.1.1. Benchmarks and datasets
OAR segmentation plays an irreplaceable role in radiation therapy

planning of Head and Neck Cancers (HNC). Developing an accurate and
robust automatic segmentation model always relies on large-scale an-
notated datasets. However, publicly available datasets are very limited
because collecting and annotating a large-scale dataset are challenging

https://segrap2023.grand-challenge.org
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Table 1
Summary of several publicly available organ-at-risk segmentation Computed Tomography (CT) datasets. ceCT is the contrast-enhanced Computed Tomography.
ncCT means the non-contrast Computed Tomography.
Dataset Modality No. of categories Scans (Training/Testing) Year Link

PDDCA ncCT 9 OARs 48 (33/15) 2015 www.imagenglab.com/newsite/pddca
HNC ncCT 28 OARs 35 (18/17) 2015 https://wiki.cancerimagingarchive.net/x/xwxp
HNPETCT ncCT 28 OARs 105 (52/53) 2017 https://doi.org/10.7937/K9/TCIA.2017.8oje5q00
StrucSeg2019 ncCT 22 OARs 60 (50/10) 2019 https://structseg2019.grand-challenge.org
HaN-Seg2023 ncCT and MRI 30 OARs 56 (42/16) 2023 https://han-seg2023.grand-challenge.org

SegRap2023 ncCT and ceCT 45 OARs 200 (140/60) 2023 https://segrap2023.grand-challenge.org
due to high expenses and data privacy protection (Wang et al., 2023a).
Table 1 summarizes several public datasets for OAR segmentation in
the head and neck region. PDDCA (Raudaschl et al., 2017) provides
48 CT scans with 9 OARs annotated for the Head and Neck Auto
Segmentation MICCAI Challenge (2015). HNC (Ang et al., 2014) and
HNPETCT (Vallieres et al., 2017) consist of 35 and 105 CT scans from
head and neck cancer patients, respectively, and all of them have
annotations of 28 OARs. Tang et al. (2019) selected 35 CT scans from
HNC and 105 CT scans from HNPETCT for further annotation and
released all masks for public research, where each patient has 28 OAR
labels. StructSeg2019 (Podobnik et al., 2023) organized a head and
neck OAR segmentation from CT and Magnetic Resonance Imaging
(MRI) challenge conjoint with MICCAI2023. The HaN-Seg2023 consists
of 56 patients with head and neck cancer and each patient has a CT and
a T1-weighted MRI scan and a reference annotation with 30 OARs.

Although these datasets have facilitated the methods research of
head and neck OAR segmentation in the community, they may be
still not enough to develop clinically applicable segmentation tools
and provide comprehensive evaluations due to the small number of
cases and annotated OARs. In other medical image segmentation tasks,
such as abdominal organ segmentation (Luo et al., 2022a; Gibson
et al., 2018; Bilic et al., 2023), many large-scale datasets have been
available for foundation model development and evaluation, and also
advance the automatic segmentation methods to be applied in clin-
ical practice (Chen et al., 2021; Huang et al., 2023; Wang et al.,
2023b). Therefore, for the head and neck OAR segmentation, it is de-
sirable to build a large-scale dataset and benchmark to boost technical
improvements and clinical application development.

2.1.2. HNC OAR segmentation methods
Recently, deep learning-based segmentation methods have shown

superiority in producing more accurate and robust than previous atlas-
based counterparts (Tang et al., 2019; Kosmin et al., 2019; Chen et al.,
2021). FocusNet (Gao et al., 2019) incorporates densely connected
atrous spatial pyramid pooling and squeeze-and-excitation modules
into the main segmentation network for OAR segmentation. Focus-
NetV2 (Gao et al., 2021) presents a two-stage framework to locate
and segment OARs progressively by combining the multi-scale con-
volutional neural network and a shape adversarial constraint. It was
evaluated on a large-scale private nasopharyngeal cancer dataset with
1164 CT scans and 22 OARs and the public PDDCA dataset and showed
a mean dice score of 82.98% and 84.50%, respectively. UaNet (Tang
et al., 2019) proposes a combination framework to detect OARs and
segment them step-by-step, which was trained on a private dataset with
215 CT scans and 28 OARs and tested on 100 CT scans with a mean
dice score of 78.34%.

Recently, Guo et al. (2020), Ye et al. (2022) developed an auto-
contouring system (SOARS) by combining the neural architecture search
strategy and an organ-level stratification learning. The proposed SOARS
was trained on an internal private dataset with 176 CT scans and 42
OARs and independently evaluated on several external cohorts with a
total of 1327 CT scans with mean dice scores ranging from 74.80% to
78.00%. Additionally, He et al. (2024) introduced a statistical deforma-
tion model-based data augmentation strategy to boost the training set’s
diversity and realism and further advance the model performance. The
3 
Fig. 1. Overview of two sub-tasks in the SegRap2023 challenge.

proposed was trained and tested on the HNPETCT dataset and achieved
a mean dice score of 79.49%. Lei et al. (2021) proposed a segmental
linear function to make organs more distinguishable and introduced a
hardness-aware loss function to emphasize the learning of hard voxels.
It was evaluated on StructSeg 2019 challenge data and achieved a
weighted average Dice of 80.52%. These reported results show that the
performance of existing OAR segmentation methods varies significantly
on different datasets. Especially the results on private datasets were
higher than those on the public datasets (Zhu et al., 2019; Tang et al.,
2019; Ye et al., 2022; Gao et al., 2021; He et al., 2024; Chen et al.,
2021). Therefore, building a large-scale public benchmark for a fair
comparison across multiple state-of-the-art methods is essential.

2.2. NPC GTV segmentation

2.2.1. Benchmarks and datasets
For the GTV segmentation of HNC, the public dataset HECKTOR was

available for model development and evaluation. HECKTOR (Oreiller
et al., 2022) challenge has been organized in conjunction with MIC-
CAI in recent three years, which aims to encourage all participants
to develop cut-edge primary gross tumor volume (GTVp) and the
lymph node gross tumor volume (GTVnd) segmentation models from
CT and FDG-PET scans. The total number of patients increased from
254 patients just with GTVp annotation in HECKTOR2020 to more
than 880 patients with both GTVp and GTVnd annotations in HECK-
TOR2022. For NPC GTV segmentation, the StructSeg2019 provides 60
nasopharyngeal carcinoma patients’ CT scans and each patient had a
GTVp annotation. Although the HECKTOR challenge provides a large-
scale dataset for GTVp and GTVnd segmentation, they focus on head
and neck cancer rather than nasopharyngeal carcinoma, so the Seg-
Rap2023 is still an important dataset for the GTVp and GTVnd of NPC
segmentation.

2.2.2. SOTA NPC GTV segmentation methods
Unlike OAR segmentation, GTV segmentation has traditionally been

conducted by experienced radiation oncologists in clinical practice.
This is attributed to the intricate nature of GTV structures and their
significant correlation with prognosis. Moreover, the scarcity of pub-
licly available datasets has been a notable challenge in the field. Many

http://www.imagenglab.com/newsite/pddca
https://wiki.cancerimagingarchive.net/x/xwxp
https://doi.org/10.7937/K9/TCIA.2017.8oje5q00
https://structseg2019.grand-challenge.org
https://han-seg2023.grand-challenge.org
https://segrap2023.grand-challenge.org


X. Luo et al.

v

s

f
o
t
r
e
t
t
s
M
G
b
s

o
c
4

f
i

C
T

Medical Image Analysis 101 (2025) 103447 
Table 2
Clinical characteristics of the SegRap2023 training, validation and testing sets. ∗ means the values are
presented as median (range). T and N stages denote the tumor and lymph node staging according to the
AJCC2017 standardized classification system (Amin et al., 2017).

Characteristics Training (n=120) Validation (n=20) Testing (n=60)

Sex
Male 81 (67.5%) 12 (60%) 37 (61.7%)
Female 39 (32.5%) 8 (40%) 23 (38.3%)

Age∗ (years) 48 (22-74) 50 (36-69) 47 (22-70)
T stage

T1 12 (10%) 2 (10%) 7 (11.7%)
T2 27 (22.5%) 5 (25%) 13 (21.7%)
T3 62 (51.7%) 11 (55%) 32 (53.3%)
T4 19 (15.8%) 2 (10%) 8 (13.3%)

N stage
N0 10 (8.3%) 1 (5%) 4 (6.7%)
N1 24 (20%) 3 (15%) 11 (18.3%)
N2 54 (45%) 11 (55%) 31 (51.7%)
N3 32 (26.7%) 4 (20%) 14 (23.3%)

Resolution (mm)
Inter-plane 3.0 3.0 3.0
Intra-plane∗ 0.55 (0.43–1.13) 0.54 (0.49–0.60) 0.59 (0.45–1.34)
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prior studies have reported GTV segmentation outcomes based on pri-
ate datasets, posing difficulties for both reproducibility and equitable

comparisons in the whole community. Li et al. (2019) trained a basic
U-Net (Ronneberger et al., 2015) to segment GTVp and GTVnd using
a large-scale private dataset with 502 CT scans and achieved a mean
dice of 65.86% and 74.00% for GTVp and GTVnd, respectively. Lin
et al. (2019) developed a 3D segmentation model on an MRI dataset
with 1021 patients to segment the GTVp and reported the performance
with a mean dice score of 79.00%. Mei et al. (2021) proposed a 2.5D
egmentation network with multi-scale and spatial attention to segment

GTVp from CT scans and won second place in the StructSeg2019
challenge with a mean dice of 65.66%.

In addition, Luo et al. (2022b) proposed a multi-scale consistency-
based semi-supervised learning framework to utilize the unlabeled data
for GTVp and GTVnd segmentation performance improvement, and
urther demonstrated the applicable in the clinical delineation flow
n a private MRI dataset with 258 patients (Liao et al., 2022), where
he mean dice scores of GTVp and GTVnd were 83.00% and 80.00%,
espectively. Recently, Luo et al. (2023) conducted a comprehensive
valuation of GTVp segmentation using a total number of 1057 pa-
ients from 5 hospitals and achieved a mean dice score of 88.00% on
he multi-center testing cohorts. These studies show that there is a
ubstantial variation in segmentation results across different datasets.
eanwhile, despite that MRI provides a higher soft tissue contrast for
TVs than CT, the current radiotherapy treatment method is mostly
ased on CT scans, so accurately contouring the GTVs of NPC from CT
cans is still challenging and urgent (Sahbaee et al., 2017).

3. SegRap2023 challenge setup

3.1. Challenge overview

To evaluate existing methods and boost the development of novel
nes for OAR and GTV segmentation, we organized the SegRap2023
hallenge in conjunction with MICCAI2023. The challenge released
00 CT scans from 200 NPC patients where each patient has a pre-

aligned pair of ncCT and ceCT scans. Fig. 1 shows an overview of the
SegRap2023 challenge. The challenge consists of two sub-tasks. The
irst one (Task01) is to segment 45 OARs, and the second task (Task02)
s to segment 2 GTVs.

3.2. Data description

The SegRap2023 dataset consists of 200 NPC patients from Sichuan
ancer Hospital & Institute, Sichuan Cancer Center, Chengdu, China.
he data acquisition was approved by the Sichuan Cancer Hospital &
4 
Institute ethics board and the private information of each patient has
een anonymized and shared with the license of Creative Commons
icense Attribution-Noncommercial (CC BY-NC). Each patient has a
cCT scan and a ceCT scan. All CT scans are collected by Siemens CT
canners with the following scanning conditions: bulb voltage, 120 kV;
urrent, 300 mA; scan thickness, 3.0 mm; matrix size, 1024 × 1024
r 512 × 512; injected contrast agent, iohexol (volume, 60−80 mL;
ate, 2 mL/s; delay, 50 s). Table 2 lists the clinical characteristics of

the training, validation, and testing sets. It can be found that there is a
similar distribution of clinical characteristics in the training, validation,
and testing sets (age, sex, 𝑇 and 𝑁 stages, and inter- or intra-plane
spacings). We retrospectively collected 200 newly treated NPC patients
rom December 2018 to December 2019. The inclusion criteria were

defined as (a) Patients who were histologically confirmed as NPC in the
M.D. S.C. Zhang treatment group; (b) The treatment strategy included
radiotherapy; (c) The radiotherapy planning had ncCT and ceCT scans
hat were acquired before the first radiation therapy for each patient
nd 45 OARs and 2 GTVs annotations; (d) Patients who are alive and

not recurrent until December 2022.
The initial contours of OARs and GTVs were delineated by S.C.

hang (MD, with more than twenty years of experience in oncology
adiation therapy) and their team (mainly including M.D. W. Liao, M.D.
. Zhao, and M.D. C. Li, all of them are with more than ten years of ex-
erience in oncology radiation therapy) using MIM Software1 according

to the latest radiation therapy delineation guideline published by Ra-
diation Therapy Oncology Group.2 The MIM software is a widely used
ommercial radiotherapy planning software for OARs and GTVs delin-
ations, which provides the Atlas-based automatic OARs segmentation
lgorithms (Iglesias and Sabuncu, 2015) and allows the oncologists to

edit the contours. In the real clinical workflow, the radiation oncolo-
gists will adjust or re-contour the Atlas-generated initial OARs’ contours
and delineate the GTVs’ contours manually until these contours are
acceptable for radiotherapy planning. Besides, during the initial delin-
eation stage, the radiation oncologists referred to other images (MRI,
PET) for clear contours, especially for the GTV delineation. To ensure
high-quality annotations, we invited W. Liao and S.C. Zhang to check
and refine these annotations using ITK-SNAP (Yushkevich et al., 2006).

ere, we also presented the performance between initial Atlas-based
utomatic OARs segmentation (Iglesias and Sabuncu, 2015) and the

final ground truth in the testing set on Tables 8 and 9, the significant
performance gaps mean that the annotation quality is not subject to

1 https://www.mimsoftware.com
2 https://www.rtog.org

https://www.mimsoftware.com
https://www.rtog.org
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the Atlas segmentation bias. Note that some small, challenging and
ncommon organs cannot be segmented using Atlas-based methods,
o we just listed the performance of successfully segmented organs.
hese annotated 45 OARs are the Brain, BrainStem, Chiasm, Cochlea

eft (Cochlea_L), Cochlea right (Cochlea_R), Esophagus, Eustachian
ube bone left (ETbone_L), Eustachian tube bone right (ETbone_R),
ye left (Eye_L), Eye right (Eye_R), Hippocampus left (Hippocam-

pus_L), Hippocampus right (Hippocampus_R), Internal auditory canal
eft (IAC_L), Internal auditory canal right (IAC_R), Larynx, Larynx glot-
ic (Larynx_Glottic), Larynx supraglottic (Larynx_Supraglot), Lens left
Len_L), Lens right (Len_R), Mandible left (Mandible_L), Mandible right
Mandible_R), Mastoid left (Mastoid_L), Mastoid right (Mastoid_R),
iddle Ear left (MiddleEar_L), Middle ear right (MiddleEar_R), Op-

tic nerve left (OpticNerve_L), Optic nerve right (OpticNerve_R), Oral
cavity, Parotid left (Parotid_L), Parotid right (Parotid_R), Pharyngeal
constrictor muscle (PharynxCont), Pituitary, SpinalCord, Submandibu-
lar left (Submandibular_L), Submandibular right (Submandibular_R),
Temporal lobe left (TemporalLobe_L), Temporal lobe right (Tempo-
ralLobe_R), Thyroid, Temporomandibular joint left (TMjoint_L), Tem-
poromandibular joint right (TMjoint_R), Trachea, Tympanic cavity
left (TympanicCavity_L), Tympanic cavity right (TympanicCavity_R),
Vestibular semicircular canal left (VestibulSemi_L), Vestibular semi-
circular canal right (VestibulSemi_R). Note that, different classes may
have an overlap, for example, Brain and BrainStem, Larynx and Lar-
ynx_Glottic. The 2 annotated GTVs are GTVp and GTVnd. Afterwards,
we provided a random split including training, validation, and testing
sets with 120, 20, and 60 patients, respectively, according to clinical
characteristics, as detailed in Table 2.

3.3. Evaluation and rank strategies

The challenge employed two widely used evaluation metrics to
measure the performance of each submission: (1) a region overlap-
based metric, Dice Similarity Coefficient (DSC) that ranges from 0.0 to
1.0, and (2) a distance-aware metric, Normalized Surface Dice (NSD)
that ranges from 0.0 to 1.0 (Nikolov et al., 2021):

𝐷 𝑆 𝐶(𝑃 , 𝑌 ) = 2 |
|

𝑉𝑃 ∩ 𝑉𝑌 ||
|

|

𝑉𝑃 || + |

|

𝑉𝑌 ||
(1)

𝑁 𝑆 𝐷(𝑃 , 𝑌 ) =
|

|

|

𝑆𝑃 ∩ 𝑆(𝜏)
𝑌

|

|

|

+ |

|

|

𝑆𝑌 ∩ 𝑆(𝜏)
𝑃

|

|

|

|

|

𝑆𝑃
|

|

+ |

|

𝑆𝑌
|

|

(2)

where 𝑉𝑃 and 𝑉𝑌 in Eq. (1) denote the predicted segmentation results
and the ground truth, respectively. In Eq. (2), 𝑆𝑃 and 𝑆𝑌 denote two
ets of nearest-neighbor distances, and 𝑆(𝜏)

𝑃 and 𝑆(𝜏)
𝑌 denote the subsets

of distances that are not larger than the acceptable distance 𝜏, which is
set as 1 mm according to the median intra-plane spacing for all classes
in the test phase of the SegRap2023 challenge except for Larynx is
set as 2 mm. If a submission has some missing target OARs or GTVs
n test cases, the corresponding DSC and NSD will be set to 0. Then,

we calculated the average DSC and NSD of each OAR or GTV across
all testing patients, respectively. Afterwards, we followed Bakas et al.
(2018) to rank all the participants according to the value of each metric
n each segmentation class respectively, and each team has 45 × 2 and
× 2 ranking scores for OAR and GTV segmentation tasks, respectively.

Finally, for each task, we employed the average ranking of each team
for the final ranking.

3.4. Challenge setup

In the SegRap2023 challenge, we designed two sub-tasks: Segmen-
tation of 45 OARs (Task01) and GTVs (Task02). The challenge consists
f three phases (training, validation and testing) and all of them were
osted in the grand challenge platform.3 During the training stage, the

3 https://grand-challenge.org
5 
training set can be accessed for all participants by signing and sending
ack an end-user agreement file, which has been made still publicly

available in the community after the challenge. The validation phase
was open from July 10th, 2023 to August 20th, 2023 and each team
was allowed to submit 5 times. In addition, we also provided the eval-
uation on our local machine if the participants sent their predictions
for the validation set to us. That is because some participants cannot
submit their evaluation docker successfully and are also limited by the
computation costs, which are too high to afford their evaluation online
many times. It is worth noting that this process evaluates the model
performance on the validation set, and no participant can access the
test set to ensure a fair comparison.

In the final testing phase, due to the testing set is not accessi-
le (Maier-Hein et al., 2020), each team was required to submit their

solution Docker container for evaluation and ranking. We provided a
GitHub page4 for tutorial on containerizing the algorithm with Docker.
ach team was only allowed to submit the Docker container once
uccessfully. All submitted Docker containers were run on the grand
hallenge platform after being submitted successfully. The segmenta-
ion performance was calculated online using an automatic evaluation
ocker container with two public Python packages (Evalutils5 and

MedPy6). The final leaderboard was announced in the MICCAI2023
challenge event after the organization team carefully reviewed and
excluded the teams without submitting their technical reports.

4. Overview of participating methods

A total of 387 teams registered for the SegRap2023 Challenge,
allowing them to download the training data. During the testing phase,
there were 10 and 11 teams that successfully submitted the con-
tainerized algorithms and met the submission requirements for Task01
nd Task02, respectively. In this section, we summarize the methods
mployed by the participating teams (two teams were excluded due
o the lack of their technical report). Table 3 and Table 4 summarize

the key techniques of benchmarked algorithms for Task01 and Task02,
respectively. Table 5 and Table 6 summarize the training details of
benchmarked algorithms for task01 and task02, respectively.

4.1. Task01: OAR segmentation

Almost all teams submitted deep learning-based methods based on
nUNet (Isensee et al., 2021) structure. All teams used similar loss

functions (mainly the combination of Dice and CE loss), and six of them
used an ensemble learning method. Two of the top five teams used
two-stage approaches, and one team used a pre-trained model. In this
task, we provided a baseline based on the nnUNet (Isensee et al., 2021)
for model training, docker preparation and inference evaluation. When
establishing the baseline, we noticed that nnUNet, with its default data
augmentation strategies, did not achieve promising performance on
ymmetrical, small, and complex organs. Upon further investigation,
e found that spatial augmentations, such as mirror/flipping, disrupt

spatial symmetry, while elastic transformations increase the training
time and do not lead to performance gain. So, we modified the default
nnUNet as the baseline by removing the mirror/flipping, and elastic
transformations from the default augmentation strategy to train the
model and also removing the test-time augmentation for inference.

(1st place, Y. Zhong et al.) Zhong et al. proposed a two-stage
pproach to segment OARs: structure-specific label generation and
oundary refinement. For structure-specific label generation, 45 organs
re divided into 29 distinct classes considering the left and right

4 https://github.com/HiLab-git/SegRap2023
5 https://evalutils.readthedocs.io/en/latest
6 https://loli.github.io/medpy

https://grand-challenge.org
https://github.com/HiLab-git/SegRap2023
https://evalutils.readthedocs.io/en/latest
https://loli.github.io/medpy
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Table 3
Summary of the benchmarked algorithms for Task01. IN means intensity normalization. IH means intensity harmonization. SA means simple augmentation techniques, including
random rotation, random scaling, ransom shifting, random cropping, and random warping. CC means Connected component-based post-processing and CDA means Connectivity
Domain Algorithm for splitting the paired organs into left and right parts.

Team Pre-processing Pre-train Two-stage Data augmentation Post-processing

Y. Zhong et al. Crop, IN, resample × ✓ Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, elastic CC, CDA
Y. Ye et al. Crop, IN, resample ✓ × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, elastic None
Y. Su et al. Crop, IN, resample × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, elastic None
K. Yang et al. Crop, IN, resample × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, elastic CC
C. Lee et al. Crop, resample × ✓ Rotation, scaling, Gaussian noise, Gaussian blur, contrast None
M. Astaraki et al. IH, crop × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma None
Z. Xing et al. Crop, IN, resample × × SA, mirror, Gaussian noise, Gaussian blur, brightness, contrast, gamma None
Y. Zhang et al. Crop, IN, Resample × × SA, mirror, Gaussian noise, Gaussian blur, brightness, contrast, gamma None
J. Huang et al. Crop, IN, Resample × ✓ Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma None
K. Huang et al. Crop, IN × × SA, brightness, contrast None
Table 4
Summary of the benchmarked algorithms for Task02. IH means intensity harmonization. IN means intensity normalization. SA means simple augmentation techniques, including
random rotation, random scaling, ransom shifting, random cropping, random warping.

Team Pre-processing Pre-train Two-stage Data augmentation

M. Astaraki et al. IH, crop × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, mirror
Y. Ye et al. Crop, IN ✓ × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, mirror
Z. Xing et al. Crop, IN, resample × × SA, Gaussian noise, Gaussian blur, brightness, contrast, gamma
K. Yang et al. Crop, IN, resample × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, mirror
C. Ulrich et al. Crop, IN, resample ✓ × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, simulation of

low resolution, gamma, mirror
N. Ndipenoch et al. Crop, IN, resample × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, mirror
Y. Su et al. Crop, IN, resample × × Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma, elastic
J. Huang et al. Crop, IN, resample × ✓ Rotation, scaling, Gaussian noise, Gaussian blur, brightness, contrast, gamma
Y. Zhang et al. Crop, IN, resample × × SA, Gaussian noise, Gaussian blur, brightness, contrast, gamma
C. Lee et al. Crop, resample × ✓ Rotation, scaling, Gaussian noise, Gaussian blur, contrast, mirror
K. Huang et al. Crop, IN × × SA, brightness
Table 5
Network architectures and training details of the benchmarked algorithms for Task01. CE and BCE mean cross-entropy and binary cross-entropy, respectively. ×(*) refers to the
umber of ensemble models.
Team Architecture Ensemble (size) Batch size Patch Size Loss function Optimizer Learning rate Device

Y. Zhong et al. nnUNetV2, nnUnetV1 ×(5) 4 56 × 192 × 160
128 × 128 × 128

Dice and CE SGD 0.01 NVIDIA A800

Y. Ye et al. nnUNet ×(2) 2 32 × 192 × 192 Dice and CE SGD 0.01 NVIDIA Geforce RTX 2080Ti
Y. Su et al. nnUNetV2 None 2 48 × 256 × 256 Dice and CE SGD 0.01 NVIDIA A100
K. Yang et al. nnUNet None 2 28 × 224 × 224 Dice and CE SGD 0.01 TITAN RTX 24G
C. Lee et al. yolo-v7 + UNet ×(5) 4 32 × 96 × 96

32 × 128 × 128
Dice and CE AdamW 1e−4 NVIDIA A5000

M. Astaraki et al. nnUNetV2 ×(5) 2 64 × 192 × 160 BCE and Dice SGD 0.01 Nvidia DGX-1 Cluster
Z. Xing et al. nnUNet ×(3) 2 64 × 256 × 256 Dice and CE SGD 0.01 NVIDIA A100 GPU
Y. Zhang et al. nnUNet None 2 64 × 192 × 160 Dice and CE SGD 0.01 NVIDIA Geforce RTX 3090
J. Huang et al. nnUNetV2 ×(4) 2 40 × 256 × 160 Dice and CE SGD 0.01 NVIDIA Geforce RTX 3090
K. Huang et al. nnUNetV2 None 2 24 × 224 × 224 Soft-dice and CE AdamW 1e−3 NVIDIA Geforce RTX 2080Ti
Table 6
Network architectures and training details of the benchmarked algorithms for Task02. CE and BCE mean cross-entropy and binary cross-entropy, respectively. SE means Squeeze-
nd-Excitation. ×(*) refers to the number of ensemble models.
Team Architecture Ensemble (size) Batch size Patch Size Loss function Optimizer Learning rate Device

M. Astaraki et al. nnUNetV2 ×(5) 2 80 × 192 × 160 Dice and BCE SGD 0.01 Nvidia DGX-1 cluster
Y. Ye et al. nnUNet ×(5) 2 64 × 192 × 192 Dice and CE SGD 0.01 NVIDIA Geforce RTX 2080Ti
Z. Xing et al. nnUNet ×(3) 2 64 × 256 × 256 Dice and CE SGD 0.01 NVIDIA A100 GPU
K. Yang et al. nnUNet None 2 28 × 256 × 256 Dice and Focal SGD 0.01 TITAN RTX 24G
C. Ulrich et al. nnUNetV2 ×(5) 4 32 × 320 × 256 Soft-dice and CE SGD 0.01 Nvidia V100, Nvidia A100, Titan RTX
N. Ndipenoch et al. nnUNet_SE ×(10) 2 64 × 192 × 192 Dice and CE SGD 0.01 NVIDIA RTX A6000 48GB
Y. Su et al. nnUNetV2 None 2 48 × 256x256 Dice and CE SGD 0.01 NVIDIA A100
J. Huang et al. nnUNetV2 ×(4) 2 40 × 256 × 160 Dice and CE SGD 0.01 NVIDIA Geforce RTX 3090
Y. Zhang et al. nnUNet None 2 64 × 192 × 160 Dice and CE SGD 0.01 NVIDIA Geforce RTX 3090
C. Lee et al. yolo-v7 + UNet ×(5) 4 32 × 96 × 96

32 × 128 × 128
Dice and CE AdamW 1e−4 NVIDIA A5000

K. Huang et al. nnUNetV2 None 2 24 × 224 × 224 Soft-dice and CE AdamW 1.e-3 NVIDIA Geforce RTX 2080Ti
t

counterparts and label overlapping in the ear and oral cavity. The
egmentation model was built based on nnUNetV2 (Isensee et al., 2021)
nd trained with paired ncCT and ceCT scans. For boundary refinement,
OIs with a size of 128 × 128 × 128 were extracted based on the
egmentation result and refined using a model with a shared encoder–
ecoder architecture, but different output layers for each organ. The
6 
refined ROI was then integrated back into the original segmentation.
(2nd place, Y. Ye et al.) Ye et al. employed the UniSeg (Ye et al.,

2023), a supervised pre-trained nnUNet model trained on multiple
segmentation datasets. To fine-tune the UniSeg model to OAR segmen-
ation, the images were first pre-processed following nnUNet (Isensee

et al., 2021) and then resampled to match the median spacing. Then,
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Table 7
Rankings of methods in DSC/NSD scores for OAR segmentation.

Team Y. Zhong et al. Y. Ye et al. Y. Su et al. K. Yang et al. C. Lee et al. M. Astaraki et al. Z. Xing et al. Y. Zhang et al. J. Huang et al. K. Huang et al.

Brain 4/3 2/2 1/1 3/4 7/7 5/5 8/6 9/9 6/8 10/10
BrainStem 1/1 3/3 5/4 7/6 10/9 8/8 2/2 4/5 6/7 9/10
Chiasm 4/3 2/1 8/7 7/6 3/8 6/5 5/4 1/2 10/10 9/9
Cochlea_L 1/1 3/3 2/2 6/5 4/4 5/6 9/9 8/8 7/7 10/10
Cochlea_R 1/1 3/3 2/2 6/4 5/6 4/5 9/8 8/9 7/7 10/10
Esophagus 2/2 4/4 1/1 3/3 5/5 6/6 8/7 9/9 7/8 10/10
ETbone_L 1/1 3/3 2/2 7/5 4/4 6/6 8/8 5/7 9/9 10/10
ETbone_R 1/1 3/2 2/3 6/4 5/6 4/5 9/9 8/8 7/7 10/10
Eye_L 1/1 3/3 2/2 6/5 5/6 4/4 9/8 8/9 7/7 10/10
Eye_R 1/1 3/3 2/4 4/2 7/7 5/5 8/8 6/6 9/9 10/10
Hippocampus_L 1/1 2/2 3/3 5/4 6/6 4/5 8/8 7/7 9/9 10/10
Hippocampus_R 1/1 3/2 5/5 4/3 2/4 7/7 8/8 6/6 10/10 9/9
IAC_L 1/1 2/2 5/5 7/7 6/6 4/4 8/8 3/3 10/10 9/9
IAC_R 1/1 3/3 2/2 5/5 4/4 6/6 8/8 7/7 10/10 9/9
Larynx 1/1 4/3 2/2 5/5 3/4 6/6 8/8 7/7 10/9 9/10
Larynx_Glottic 1/2 2/1 3/3 5/5 4/4 6/6 8/9 7/8 10/7 9/10
Larynx_Supraglot 1/1 2/2 4/4 5/5 3/3 6/6 8/9 7/7 9/8 10/10
Lens_L 1/1 2/3 4/2 5/4 3/6 6/5 7/7 8/8 10/10 9/9
Lens_R 1/1 2/2 4/3 5/5 3/4 6/6 8/8 7/7 10/10 9/9
Mandible_L 1/1 2/2 4/4 3/3 5/5 6/6 8/8 7/9 9/7 10/10
Mandible_R 1/1 2/2 7/4 4/5 3/3 5/6 8/8 6/7 10/9 9/10
Mastoid_L 2/3 1/2 3/1 4/4 5/5 6/6 7/8 8/9 9/7 10/10
Mastoid_R 1/1 2/3 6/2 4/4 3/5 5/6 8/9 7/7 10/8 9/10
MiddleEar_L 1/1 2/2 3/3 4/4 5/5 6/6 8/7 7/8 10/9 9/10
MiddleEar_R 2/2 5/4 1/1 7/7 3/3 6/6 8/8 4/5 10/9 9/10
OpticNerve_L 1/2 3/3 7/5 4/4 5/7 8/9 2/1 9/6 10/10 6/8
OpticNerve_R 1/1 3/3 2/2 5/4 4/5 7/7 8/8 10/10 6/6 9/9
OralCavity 1/1 4/5 3/3 7/7 6/4 5/6 8/8 10/10 2/2 9/9
Parotid_L 4/4 2/1 3/2 7/7 6/6 5/5 8/8 10/10 1/3 9/9
Parotid_R 6/3 2/4 1/1 5/5 7/7 4/6 8/8 10/10 3/2 9/9
PharynxConst 3/2 2/3 1/1 5/4 8/8 4/6 7/7 10/10 6/5 9/9
Pituitary 3/4 2/2 1/1 4/3 7/7 6/6 8/9 10/10 5/5 9/8
SpinalCord 5/4 2/2 3/3 1/1 7/6 4/5 8/8 10/10 6/7 9/9
Submandibular_L 1/1 3/3 2/2 4/4 5/5 6/6 8/7 10/10 7/8 9/9
Submandibular_R 2/2 1/1 4/4 3/3 6/6 5/5 8/8 9/9 7/7 10/10
TemporalLobe_L 2/2 4/4 1/1 3/3 6/6 5/5 7/7 8/8 10/10 9/9
TemporalLobe_R 1/1 3/3 2/2 4/4 6/6 5/5 7/7 8/8 10/10 9/9
Thyroid 1/2 2/1 3/3 5/5 9/9 4/4 6/7 8/8 7/6 10/10
Trachea 1/1 6/6 5/5 4/4 2/2 3/3 9/8 10/10 7/7 8/9
TympanicCavity_L 1/1 3/3 2/2 5/5 6/6 4/4 7/7 8/8 10/10 9/9
TMjoint_L 2/1 3/2 5/4 6/3 4/5 8/7 7/8 9/9 10/10 1/6
TMjoint_R 1/1 4/2 2/3 5/5 7/7 6/6 3/4 8/9 10/10 9/8
TympanicCavity_R 1/1 3/2 4/4 6/6 7/7 5/5 2/3 9/9 10/10 8/8
VestibulSemi_L 1/1 2/3 3/2 4/4 6/5 5/6 7/7 10/10 8/8 9/9
VestibulSemi_R 3/4 1/1 4/3 2/5 9/9 5/7 6/2 7/6 10/10 8/8

Average 1.7/1.6 2.7/2.6 3.1/2.8 4.8/4.4 5.2/5.6 5.4/5.7 7.3/7.2 7.7/7.9 8.1/7.9 9/9.3
Overall 1 2 3 4 5 6 7 8 9 10
t
m
t
f
s

a

d
d
c
a
p
n

w

UniSeg was trained with 1500 epochs and 2000 epochs using paired
ncCT and ceCT images. During inference, the image was pre-processed
with nnUNet’s pre-processing step, then segmented into patches using
a sliding window approach, and the two predictions for each patch
from two fine-tuned UniSeg models were averaged to form the final
segmentation map.

(3rd place, Y. Su et al.) Su et al. used a vanilla nnUNet (Isensee
et al., 2021) for OAR segmentation, incorporating data augmentation
echniques, including additive brightness, gamma correction, rotation,

scaling, and elastic deformation. Given the symmetry of head and neck
organs, mirror operation was not used. The model was trained with
n increased patch size (48 × 256 × 256) to improve segmentation
erformance.

(4th place, K. Yang et al.) Yang et al. used nnUNet (Isensee et al.,
2021) and region-based training mode for accurate and efficient seg-

entation. In the training stage, the images were augmented by elastic
eformation without flipping. To address the issue of missing labels

in some training cases, such as MiddleEar ETbone Overlap, a masked
oss function was used, where the channels of label missing were
gnored to correct model training. For overlapping regions, a region-

based training mode was used to segment areas that are merged by
more than one class. During inference, a sliding window strategy and a
connect component-based post-processing were adopted to obtain final
segmentation results.
 t

7 
(5th place, C. Lee et al.) Lee et al. proposed a two-stage method
consisting of organ localization followed by segmentation. In the lo-
calization stage, a 2D-based object detection network powered by
the YOLO-v7 model (Wang et al., 2022) was used for identifying a
bounding box around the OARs. For segmentation, different window
widths and levels were used for multi-channel input generation. A
segmentation network with DynUNet architecture was trained using
hese multi-channel inputs, employing single organ training and sym-
etrical OARs Flipped-Unification. For OARs Flipped-Unification, the

raining data was from one of the symmetrical OARs while utilizing a
lipped version of the same to represent its counterpart because of the
ymmetry in the head and neck area. During inference, ROIs were first

extracted, and then all predictions from five segmentation models were
veraged as final results.

(6th place, M. Astaraki et al.) Astaraki et al. utilized intensity
istribution harmonization and efficient cropping strategies. To better
istinguish the overlapping OARs from each other, the HU values of the
eCT and ncCT volumes were clamped into the range of [−400, 2000]
nd [−300, 800] for pre-processing, respectively. The pre-processed
aired full-resolution CT images were used to train a segmentation
etwork based on the nnUNetV1 (Isensee et al., 2021) framework with

2000 epochs using five-fold cross-validation. During inference, volumes
ere cropped based on the TotalSegmentor (Wasserthal et al., 2023)

model and a connected component analysis before being segmented by
he trained segmentation network.



X. Luo et al.

w

t
t
l
r
[
n
e
a

Medical Image Analysis 101 (2025) 103447 
Table 8
Summary of the average DSC (%) score of OAR segmentation by the ten teams.

Team Y. Zhong et al. Y. Ye et al. Y. Su et al. K. Yang et al. C. Lee et al. M. Astaraki et al. Z. Xing et al. Y. Zhang et al. J. Huang et al. K. Huang et al. Baseline Atlas

Brain 98.62 ± 0.26 98.63 ± 0.30 98.65 ± 0.32 98.62 ± 0.31 98.58 ± 0.25 98.61 ± 0.35 98.54 ± 0.22 98.44 ± 0.18 98.60 ± 0.27 98.42 ± 0.22 98.47 ± 0.27 98.23 ± 0.31

BrainStem 92.45 ± 2.76 92.28 ± 2.67 91.97 ± 2.82 91.88 ± 2.62 91.57 ± 4.45 91.75 ± 2.74 92.32 ± 2.73 92.06 ± 2.77 91.92 ± 2.75 91.72 ± 2.85 91.84 ± 3.01 88.24 ± 4.36

Chiasm 70.55 ± 14.41 71.08 ± 13.67 69.49 ± 13.34 69.67 ± 13.72 70.67 ± 15.60 70.03 ± 14.41 70.53 ± 14.68 71.76 ± 13.05 64.57 ± 16.07 69.13 ± 14.21 70.12 ± 12.31 52.32 ± 23.93

Cochlea_L 94.91 ± 1.36 94.77 ± 1.27 94.83 ± 1.47 94.54 ± 2.13 94.76 ± 1.27 94.55 ± 1.41 87.10 ± 19.12 89.02 ± 9.36 94.26 ± 1.59 83.54 ± 26.02 93.27 ± 1.66 –

Cochlea_R 95.32 ± 1.28 94.93 ± 1.53 94.99 ± 1.53 94.63 ± 2.52 94.71 ± 1.42 94.84 ± 1.38 87.65 ± 18.36 88.93 ± 10.50 94.52 ± 1.58 80.58 ± 30.46 94.38 ± 1.73 –

Esophagus 77.32 ± 8.09 76.60 ± 7.95 77.63 ± 7.81 76.69 ± 8.15 76.05 ± 8.59 75.71 ± 8.10 73.53 ± 16.30 73.51 ± 9.88 73.83 ± 11.55 67.91 ± 23.08 73.34 ± 9.36 63.87 ± 21.49

ETbone_L 79.18 ± 8.19 78.19 ± 8.20 78.98 ± 8.37 76.82 ± 12.69 77.97 ± 7.91 77.38 ± 8.07 76.07 ± 16.24 77.47 ± 6.59 74.55 ± 12.71 68.27 ± 26.12 77.07 ± 6.88 –

ETbone_R 94.04 ± 2.09 93.91 ± 2.01 93.99 ± 2.19 93.53 ± 4.74 93.69 ± 2.09 93.74 ± 2.23 88.11 ± 21.67 90.00 ± 11.70 92.89 ± 4.76 84.23 ± 26.48 93.14 ± 1.87 –

Eye_L 93.30 ± 2.08 93.17 ± 1.90 93.24 ± 2.11 91.60 ± 11.29 92.72 ± 2.32 92.82 ± 2.07 87.92 ± 20.51 89.23 ± 10.42 90.71 ± 12.00 81.23 ± 29.61 92.52 ± 2.02 71.38 ± 12.35

Eye_R 72.34 ± 7.78 78.02 ± 8.12 78.18 ± 8.21 77.72 ± 8.99 74.78 ± 12.34 77.41 ± 8.28 73.43 ± 20.77 75.10 ± 13.17 70.34 ± 15.76 67.93 ± 22.86 71.08 ± 10.38 70.27 ± 14.45

Hippocampus_L 75.83 ± 8.52 75.54 ± 7.88 75.31 ± 7.30 74.88 ± 12.74 73.31 ± 10.89 75.02 ± 7.95 71.74 ± 18.55 71.95 ± 14.31 67.18 ± 18.18 64.19 ± 24.61 75.29 ± 6.91 –

Hippocampus_R 79.99 ± 7.71 78.99 ± 8.05 78.43 ± 8.86 78.60 ± 9.48 79.44 ± 7.34 77.48 ± 9.19 75.73 ± 18.94 77.75 ± 12.85 65.90 ± 20.71 69.79 ± 25.48 78.49 ± 8.13 –

IAC_L 81.94 ± 7.23 81.75 ± 7.50 80.50 ± 8.92 79.26 ± 13.27 80.24 ± 7.85 80.57 ± 7.43 78.18 ± 16.92 81.01 ± 7.93 65.89 ± 24.97 71.09 ± 25.13 78.59 ± 8.60 –

IAC_R 88.42 ± 5.18 87.38 ± 5.32 87.45 ± 4.72 86.78 ± 5.93 87.16 ± 5.12 85.25 ± 7.49 82.46 ± 17.02 82.68 ± 17.50 69.85 ± 7.35 76.40 ± 24.44 84.85 ± 5.09 –

Larynx 89.25 ± 5.02 87.37 ± 5.28 87.98 ± 5.08 86.62 ± 7.24 87.47 ± 6.55 85.98 ± 7.74 83.10 ± 16.66 84.07 ± 15.80 68.19 ± 8.82 74.56 ± 30.97 87.26 ± 4.35 82.68 ± 6.81

Larynx_Glottic 84.94 ± 8.45 84.54 ± 8.13 83.82 ± 8.01 82.80 ± 9.32 83.70 ± 7.62 82.36 ± 8.66 74.23 ± 17.56 79.66 ± 17.29 72.73 ± 18.33 73.46 ± 23.09 83.50 ± 8.22 –

Larynx_Supraglot 85.34 ± 7.34 84.72 ± 7.27 84.17 ± 7.33 82.28 ± 13.03 84.60 ± 6.18 81.25 ± 8.88 75.82 ± 17.41 79.70 ± 19.63 70.28 ± 23.08 67.76 ± 31.81 82.58 ± 8.15 –

Lens_L 81.95 ± 7.28 81.39 ± 7.41 80.77 ± 8.17 80.64 ± 7.51 81.00 ± 7.30 80.27 ± 8.49 76.96 ± 16.47 74.80 ± 20.48 52.98 ± 11.99 71.39 ± 23.57 78.62 ± 9.20 46.42 ± 23.56

Lens_R 84.18 ± 7.22 83.58 ± 7.15 82.83 ± 7.63 82.33 ± 7.76 83.57 ± 7.16 81.57 ± 8.06 78.96 ± 16.66 79.39 ± 16.33 55.07 ± 13.34 70.78 ± 28.94 82.47 ± 7.64 44.76 ± 24.39

Mandible_L 83.79 ± 8.80 83.42 ± 8.51 82.68 ± 8.47 82.75 ± 9.03 82.38 ± 7.77 81.67 ± 11.81 77.55 ± 17.46 77.98 ± 20.02 73.33 ± 14.70 71.63 ± 24.32 82.39 ± 8.03 69.46 ± 28.64

Mandible_R 83.49 ± 9.06 83.19 ± 8.55 79.35 ± 10.92 82.25 ± 9.04 82.65 ± 7.60 81.07 ± 12.63 77.98 ± 15.78 79.48 ± 16.41 66.84 ± 18.83 67.28 ± 29.47 82.49 ± 8.14 67.19 ± 32.47

Mastoid_L 84.10 ± 8.21 84.50 ± 7.72 84.04 ± 7.42 83.49 ± 8.23 82.56 ± 8.01 81.81 ± 12.57 78.98 ± 16.85 78.25 ± 20.06 72.57 ± 18.13 71.46 ± 24.56 82.92 ± 8.47 –

Mastoid_R 83.35 ± 9.43 82.85 ± 9.47 80.43 ± 11.63 81.50 ± 13.63 81.97 ± 8.31 80.98 ± 12.45 76.76 ± 16.70 79.54 ± 16.75 68.09 ± 22.35 68.15 ± 29.63 82.52 ± 9.48 –

MiddleEar_L 82.14 ± 5.72 82.06 ± 5.49 81.46 ± 5.72 80.92 ± 6.77 80.46 ± 7.23 79.77 ± 7.90 77.36 ± 15.87 77.64 ± 17.39 66.98 ± 16.86 72.24 ± 23.18 70.65 ± 8.31 –

MiddleEar_R 78.99 ± 10.86 76.35 ± 9.74 79.12 ± 9.46 74.61 ± 12.70 78.06 ± 9.95 74.78 ± 10.87 74.40 ± 16.81 76.54 ± 14.28 61.84 ± 18.19 67.83 ± 25.41 74.82 ± 9.83 –

OpticNerve_L 77.70 ± 13.86 77.27 ± 13.6 75.78 ± 17.65 76.58 ± 16.14 76.58 ± 16.31 75.52 ± 14.98 77.65 ± 14.04 75.35 ± 17.87 64.44 ± 23.53 75.78 ± 13.26 75.81 ± 16.44 56.29 ± 16.41

OpticNerve_R 95.04 ± 1.56 94.96 ± 1.61 94.98 ± 1.64 94.94 ± 1.60 94.95 ± 1.59 94.79 ± 1.58 94.63 ± 1.61 94.15 ± 1.70 94.85 ± 1.57 94.28 ± 1.79 93.89 ± 1.78 57.08 ± 16.43

OralCavity 95.02 ± 1.88 94.92 ± 1.84 94.99 ± 1.87 92.60 ± 3.74 94.35 ± 2.04 94.67 ± 1.89 90.47 ± 15.26 72.19 ± 19.30 95.01 ± 1.90 85.46 ± 22.03 93.38 ± 2.30 87.21 ± 10.01

Parotid_L 94.27 ± 3.30 94.39 ± 3.23 94.36 ± 3.33 91.73 ± 6.08 93.76 ± 3.32 94.16 ± 3.22 91.10 ± 12.85 73.17 ± 18.57 94.41 ± 3.15 84.57 ± 22.07 93.41 ± 3.41 71.52 ± 17.55

Parotid_R 88.99 ± 9.85 89.63 ± 6.48 89.74 ± 6.26 89.00 ± 7.61 87.94 ± 9.33 89.13 ± 7.73 86.70 ± 13.62 67.10 ± 20.60 89.30 ± 7.19 83.82 ± 18.29 88.31 ± 7.54 72.39 ± 16.63

PharynxConst 87.27 ± 11.50 87.59 ± 9.24 87.82 ± 9.18 86.46 ± 12.04 85.11 ± 13.41 87.23 ± 9.48 85.65 ± 13.63 66.49 ± 21.86 85.94 ± 15.49 81.91 ± 18.79 86.99 ± 9.12 –

Pituitary 90.26 ± 4.41 90.28 ± 4.51 90.36 ± 4.66 90.25 ± 4.48 89.09 ± 5.32 89.89 ± 4.52 83.04 ± 16.22 70.21 ± 24.19 90.23 ± 4.49 81.62 ± 24.54 88.36 ± 5.28 57.81 ± 28.56

SpinalCord 88.26 ± 7.46 88.68 ± 6.50 88.63 ± 6.33 88.99 ± 5.73 86.41 ± 11.02 88.46 ± 6.46 82.39 ± 16.29 71.96 ± 20.22 87.40 ± 7.22 78.44 ± 24.69 86.32 ± 7.56 78.42 ± 18.32

Submandibular_L 92.90 ± 2.40 92.79 ± 2.58 92.84 ± 2.53 92.55 ± 2.70 92.36 ± 2.50 92.33 ± 2.67 84.56 ± 19.04 79.26 ± 23.89 86.69 ± 4.59 81.31 ± 26.09 90.62 ± 3.92 63.42 ± 15.87

Submandibular_R 92.47 ± 3.52 92.49 ± 3.49 92.30 ± 3.40 92.35 ± 3.60 92.00 ± 3.63 92.05 ± 3.64 84.46 ± 19.79 82.66 ± 16.45 87.95 ± 4.30 77.68 ± 30.37 91.62 ± 3.69 61.89 ± 13.14

TemporalLobe_L 89.23 ± 7.20 88.84 ± 7.08 89.32 ± 6.80 88.88 ± 7.36 88.45 ± 7.40 88.54 ± 7.06 81.76 ± 21.86 79.91 ± 23.90 73.35 ± 19.82 79.19 ± 25.61 88.37 ± 6.81 83.42 ± 9.82

TemporalLobe_R 90.37 ± 4.72 89.72 ± 5.17 89.95 ± 4.69 89.43 ± 5.55 88.78 ± 6.09 89.21 ± 5.89 83.88 ± 15.17 83.32 ± 15.93 67.09 ± 22.58 75.22 ± 31.10 89.22 ± 4.53 84.57 ± 6.49

Thyroid 89.69 ± 4.29 89.54 ± 3.85 89.44 ± 3.98 89.27 ± 4.05 88.80 ± 4.14 89.28 ± 4.12 89.17 ± 4.21 88.90 ± 3.96 88.95 ± 3.66 88.32 ± 4.00 88.52 ± 3.31 73.38 ± 14.38

TMjoint_L 82.34 ± 8.16 82.25 ± 8.01 82.21 ± 8.00 81.86 ± 8.01 82.21 ± 8.00 81.31 ± 8.51 81.41 ± 7.98 81.26 ± 7.56 34.91 ± 25.87 82.42 ± 7.97 84.33 ± 10.96 74.59 ± 12.67

TMjoint_R 89.74 ± 3.97 89.28 ± 4.18 89.35 ± 3.91 89.14 ± 4.19 88.75 ± 3.89 88.90 ± 3.98 89.32 ± 3.95 88.35 ± 3.95 63.13 ± 23.27 88.08 ± 3.45 89.59 ± 4.41 75.48 ± 11.69

Trachea 85.01 ± 2.66 83.98 ± 2.15 84.07 ± 2.26 84.08 ± 2.20 84.81 ± 2.91 84.10 ± 2.09 82.57 ± 3.50 82.28 ± 3.11 82.89 ± 3.47 82.70 ± 2.94 79.65 ± 4.65 73.29 ± 16.72

TympanicCavity_L 89.66 ± 2.21 89.37 ± 2.18 89.55 ± 2.32 89.23 ± 2.38 89.21 ± 2.07 89.25 ± 2.43 89.03 ± 2.37 88.80 ± 2.17 81.43 ± 4.94 88.76 ± 2.20 88.43 ± 2.03 –

TympanicCavity_R 85.17 ± 4.83 84.53 ± 4.66 84.36 ± 4.89 84.04 ± 4.92 83.03 ± 4.57 84.08 ± 4.85 84.71 ± 4.89 81.05 ± 6.05 71.91 ± 6.89 82.13 ± 5.85 81.77 ± 3.83 –

VestibulSemi_L 91.27 ± 3.34 90.90 ± 3.11 90.90 ± 3.15 90.59 ± 3.12 90.25 ± 3.44 90.30 ± 3.07 90.10 ± 3.16 88.66 ± 3.83 89.91 ± 3.36 88.84 ± 3.19 79.46 ± 9.08 –

VestibulSemi_R 85.18 ± 9.46 85.56 ± 8.55 85.11 ± 8.96 85.48 ± 7.87 84.46 ± 9.47 84.96 ± 8.85 84.94 ± 9.22 84.73 ± 8.50 77.13 ± 7.37 84.69 ± 8.46 84.27 ± 6.97 –

Average 86.70 ± 9.30 86.36 ± 9.15 86.14 ± 9.58 85.62 ± 10.48 85.68 ± 9.87 85.44 ± 10.17 82.51 ± 16.48 80.57 ± 16.52 76.68 ± 19.62 78.14 ± 23.65 84.65 ± 9.95 –
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(7th place, Z. Xing et al.) Xing et al. focused on using cropping
and test-time augmentation strategies to perform OAR segmentation.
To save training time, the images were cropped based on regions

ith intensity values in the range of [−175, 250]. Extensive data
augmentation techniques, including spatial (with random mirror) and
intensity transforms, were used to improve the robustness segmentation
model. An ensemble of five UNet-based segmentation models, each
with varying batch sizes, parameter scales, and normalization methods,
was used to generate a robust prediction. During inference, test-time
augmentation based on mirror operation and sliding window with
overlap was used to improve the robustness of the prediction.

(8th place, Y. Zhang et al.) Zhang et al. employed nnUNet (Isensee
et al., 2021) framework, clipping the HU values of the CT images to
he [0.5, 99.5] percentiles of these intensity values. Data augmenta-
ion methods, including spatial (with random mirror), intensity, and
abel-based transformation, were used to enhance data diversity and
ichness. Paired CT images were randomly cropped into patches of size
28, 224, 224] and used to train a 3D full-resolution UNet based on
nUNet (Isensee et al., 2021). During inference, the patch size was
qual to the patch size during training, and the sliding window with
 step size was half of the window size.
8 
(9th place, J. Huang et al.) J. Huang et al. used a two-step method
or OAR segmentation, consisting of coarse and fine segmentation. The
ntensity values of paired CT images were clipped to [−300, 1500] and
hen normalized to [−1, 1] by min–max normalization. Symmetrical
rgans on the left and right sides were treated as separate tags for
odel training, incorporating data augmentation methods like random

lipping and rotation. In the coarse segmentation stage, pre-processed
mages were used to train a 3D UNet to get the position and size of the
arget areas, after which the corresponding ROIs were cropped based
n the coarse segmentation results. In the fine stage, a 3D UNet was
rained based on paired CT images and corresponding ROIs to refine
he coarse segmentation results. During inference, segmentation results
re generated through these two progressive stages and then divided
nto left and right parts based on spatial position.

(10th place, K. Huang et al.) K. Huang et al. proposed a method
ased on the nnUNetV2 framework (Isensee et al., 2021). The paired CT

volumes were resampled, cropped, and normalized following Isensee
et al. (2021). Data augmentation strategies, including spatial transform,
intensity transform, and simulated low-resolution transform, were used
to improve the diversity of data. Five-fold cross-validation was used to
train segmentation networks. During inference, various augmentations
like different region cropping and adjustments in scaling were applied
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Table 9
Summary of the average NSD (%) score of OAR segmentation by the ten teams.

Team Y. Zhong et al. Y. Ye et al. Y. Su et al. K. Yang et al. C. Lee et al. M. Astaraki et al. Z. Xing et al. Y. Zhang et al. J. Huang et al. K. Huang et al. Baseline Atlas

Brain 89.68 ± 4.75 89.77 ± 5.25 89.79 ± 5.28 89.64 ± 5.29 88.92 ± 4.84 89.39 ± 5.81 88.92 ± 4.80 87.57 ± 4.56 88.89 ± 5.11 87.08 ± 5.06 88.02 ± 4.93 87.86 ± 4.98

BrainStem 82.00 ± 10.57 81.54 ± 10.29 80.57 ± 10.65 80.27 ± 9.95 79.28 ± 12.01 79.82 ± 10.12 81.55 ± 10.60 80.38 ± 10.28 80.17 ± 10.40 79.16 ± 11.02 79.13 ± 11.03 78.36 ± 14.38

Chiasm 77.07 ± 15.58 77.50 ± 14.65 75.98 ± 14.4 76.18 ± 14.36 75.84 ± 17.35 76.38 ± 15.59 76.77 ± 16.05 77.24 ± 13.85 72.55 ± 15.29 75.18 ± 14.71 75.79 ± 12.76 49.89 ± 26.79

Cochlea_L 79.99 ± 7.71 79.43 ± 7.04 79.76 ± 7.43 78.90 ± 7.67 79.26 ± 7.24 78.31 ± 7.73 69.98 ± 16.97 70.37 ± 10.53 77.11 ± 7.19 66.35 ± 22.97 73.14 ± 8.17 –

Cochlea_R 80.61 ± 7.80 78.60 ± 8.85 78.91 ± 8.78 78.21 ± 9.29 77.57 ± 8.87 77.99 ± 8.46 69.33 ± 16.95 68.59 ± 12.74 76.28 ± 8.81 63.14 ± 25.63 76.50 ± 8.57 –

Esophagus 68.31 ± 12.25 67.57 ± 12.03 68.92 ± 11.76 68.06 ± 11.69 66.24 ± 12.48 66.14 ± 11.74 64.93 ± 16.76 62.79 ± 13.27 64.89 ± 13.97 59.43 ± 21.29 60.88 ± 12.99 56.48 ± 25.29

ETbone_L 71.62 ± 13.33 70.06 ± 12.92 71.31 ± 13.82 68.81 ± 15.40 68.88 ± 13.05 68.69 ± 12.98 68.02 ± 18.13 68.48 ± 11.05 65.67 ± 14.79 61.14 ± 24.81 68.08 ± 11.17 –

ETbone_R 91.16 ± 8.21 90.87 ± 7.64 90.81 ± 8.41 90.73 ± 9.33 89.84 ± 8.07 90.01 ± 8.49 84.88 ± 21.83 85.43 ± 14.38 88.78 ± 9.28 79.67 ± 26.71 88.49 ± 7.27 –

Eye_L 88.71 ± 8.11 88.40 ± 7.77 88.66 ± 9.12 87.15 ± 11.96 86.89 ± 8.99 87.43 ± 8.16 83.00 ± 20.97 82.79 ± 13.17 83.94 ± 13.79 74.40 ± 28.73 86.37 ± 8.03 73.49 ± 14.18

Eye_R 90.12 ± 8.76 89.88 ± 8.71 89.64 ± 8.66 89.90 ± 9.64 85.80 ± 12.36 89.07 ± 8.74 84.35 ± 22.90 86.61 ± 13.24 82.47 ± 17.22 76.96 ± 26.45 87.61 ± 10.22 72.58 ± 13.27

Hippocampus_L 86.58 ± 10.94 86.42 ± 10.33 86.38 ± 8.96 85.63 ± 15.20 83.46 ± 12.23 85.53 ± 10.29 81.77 ± 21.68 83.15 ± 13.58 78.56 ± 20.00 71.97 ± 28.12 86.11 ± 8.85 –

Hippocampus_R 87.96 ± 9.00 86.73 ± 9.32 86.20 ± 10.42 86.41 ± 10.69 86.30 ± 8.23 84.95 ± 10.63 83.16 ± 20.83 85.39 ± 14.38 76.88 ± 17.87 77.39 ± 27.81 85.54 ± 9.59 –

IAC_L 89.19 ± 7.66 89.16 ± 7.88 87.84 ± 9.28 86.74 ± 14.40 86.88 ± 8.54 87.86 ± 8.16 84.90 ± 18.33 88.01 ± 8.65 75.94 ± 23.33 78.10 ± 26.91 84.83 ± 9.74 –

IAC_R 91.71 ± 6.54 90.28 ± 6.99 90.43 ± 5.98 89.68 ± 7.50 89.94 ± 6.61 87.84 ± 9.26 85.11 ± 17.75 85.59 ± 17.44 75.54 ± 5.58 78.33 ± 25.03 87.46 ± 6.33 –

Larynx 98.10 ± 3.54 97.03 ± 3.92 97.53 ± 2.84 96.54 ± 5.56 96.63 ± 5.00 96.09 ± 6.84 92.2 ± 17.52 93.75 ± 14.35 86.65 ± 4.65 85.11 ± 30.30 97.38 ± 2.48 91.83 ± 12.37

Larynx_Glottic 95.38 ± 6.24 95.40 ± 6.06 95.07 ± 6.26 94.19 ± 8.04 94.43 ± 6.41 93.72 ± 7.39 86.18 ± 18.62 90.37 ± 18.57 90.94 ± 13.52 84.29 ± 23.52 94.63 ± 6.46 –

Larynx_Supraglot 96.17 ± 5.44 95.88 ± 5.85 95.67 ± 5.53 93.90 ± 13.54 95.86 ± 4.75 93.48 ± 7.57 87.69 ± 18.65 90.73 ± 19.27 87.72 ± 20.38 78.02 ± 35.78 94.59 ± 6.69 –

Lens_L 92.05 ± 6.83 91.69 ± 7.02 91.71 ± 6.91 91.17 ± 6.82 90.42 ± 6.95 90.57 ± 8.62 86.53 ± 17.63 85.38 ± 20.46 67.51 ± 10.57 80.40 ± 26.61 88.52 ± 7.95 63.47 ± 13.24

Lens_R 92.27 ± 7.17 91.66 ± 7.46 91.31 ± 7.94 91.10 ± 8.19 91.18 ± 8.32 90.24 ± 8.91 86.63 ± 18.03 87.47 ± 15.81 67.26 ± 12.83 78.62 ± 29.98 90.19 ± 7.99 61.88 ± 16.29

Mandible_L 94.99 ± 7.19 94.97 ± 6.98 94.72 ± 7.16 94.83 ± 7.22 93.93 ± 7.46 93.66 ± 9.64 88.82 ± 17.91 88.80 ± 21.98 89.49 ± 10.39 83.58 ± 25.60 94.55 ± 6.85 82.39 ± 23.47

Mandible_R 94.94 ± 6.94 94.85 ± 6.74 94.58 ± 6.38 94.23 ± 7.32 94.65 ± 6.60 93.68 ± 9.61 90.06 ± 16.37 91.26 ± 15.45 84.97 ± 14.03 78.89 ± 32.05 94.84 ± 6.58 76.47 ± 18.49

Mastoid_L 95.43 ± 6.70 95.69 ± 6.14 95.84 ± 5.79 95.11 ± 7.39 93.97 ± 6.63 93.90 ± 10.61 90.75 ± 18.45 88.93 ± 21.90 92.12 ± 10.52 83.16 ± 27.24 94.35 ± 6.83 –

Mastoid_R 95.10 ± 7.91 94.70 ± 8.12 94.88 ± 7.00 93.99 ± 11.00 93.84 ± 7.46 93.19 ± 10.38 89.04 ± 17.92 91.50 ± 15.78 89.27 ± 14.63 80.41 ± 30.46 94.53 ± 8.08 –

MiddleEar_L 95.01 ± 4.37 94.93 ± 4.47 94.87 ± 4.52 94.19 ± 5.78 93.93 ± 6.02 93.39 ± 6.28 90.40 ± 17.2 90.33 ± 18.99 87.38 ± 13.56 84.86 ± 25.40 86.70 ± 6.76 –

MiddleEar_R 92.60 ± 9.06 91.16 ± 7.60 93.41 ± 7.43 89.55 ± 11.08 91.37 ± 9.40 89.85 ± 9.24 88.44 ± 17.09 90.55 ± 13.75 84.19 ± 14.82 81.35 ± 27.67 89.93 ± 7.94 –

OpticNerve_L 86.61 ± 11.99 85.90 ± 11.99 84.73 ± 16.59 84.78 ± 16.08 84.56 ± 15.9 84.34 ± 13.38 86.69 ± 12.24 84.69 ± 14.77 79.65 ± 21.20 84.43 ± 11.96 84.59 ± 15.79 74.49 ± 19.21

OpticNerve_R 75.79 ± 10.36 75.32 ± 10.46 75.48 ± 10.55 75.09 ± 10.34 74.85 ± 10.81 74.26 ± 9.98 72.94 ± 10.54 69.66 ± 10.86 74.84 ± 10.29 70.94 ± 11.69 69.01 ± 10.45 75.07 ± 16.54

OralCavity 99.79 ± 0.56 99.72 ± 0.47 99.74 ± 0.47 96.88 ± 3.37 99.74 ± 0.60 99.72 ± 0.52 95.43 ± 15.02 76.82 ± 13.87 99.75 ± 0.39 91.04 ± 21.56 98.77 ± 1.48 93.28 ± 2.25

Parotid_L 91.87 ± 9.84 92.17 ± 9.33 92.07 ± 9.67 88.57 ± 10.41 89.93 ± 11.59 91.72 ± 9.53 87.82 ± 15.78 65.97 ± 17.64 92.02 ± 9.50 80.89 ± 23.70 89.58 ± 9.51 66.31 ± 16.57

Parotid_R 82.91 ± 14.67 82.79 ± 12.91 83.53 ± 12.02 82.42 ± 13.51 79.86 ± 13.89 82.00 ± 13.95 79.70 ± 17.06 58.44 ± 17.61 83.40 ± 12.46 75.35 ± 19.66 78.75 ± 15.08 67.39 ± 14.32

PharynxConst 79.34 ± 18.10 79.08 ± 16.74 79.66 ± 16.66 78.32 ± 18.06 74.14 ± 18.84 77.87 ± 17.67 76.52 ± 18.75 55.21 ± 20.20 78.30 ± 19.54 72.43 ± 21.29 76.45 ± 16.94 –

Pituitary 74.12 ± 15.93 74.14 ± 16.30 74.51 ± 16.71 74.12 ± 16.19 70.20 ± 16.50 72.50 ± 16.29 65.99 ± 19.65 56.07 ± 19.93 73.74 ± 16.30 66.91 ± 24.45 68.53 ± 16.03 56.09 ± 22.56

SpinalCord 70.25 ± 19.22 71.21 ± 18.31 70.84 ± 18.64 71.53 ± 17.16 68.13 ± 18.61 69.95 ± 18.42 62.98 ± 20.18 53.59 ± 18.92 66.39 ± 20.17 60.69 ± 24.24 64.62 ± 18.47 58.35 ± 19.35

Submandibular_L 90.06 ± 6.36 89.68 ± 7.09 89.86 ± 6.94 89.25 ± 7.04 88.87 ± 6.23 88.65 ± 7.18 79.47 ± 18.82 75.79 ± 22.20 79.26 ± 8.48 76.41 ± 26.28 84.18 ± 8.71 59.29 ± 25.18

Submandibular_R 88.93 ± 9.12 89.13 ± 8.97 88.68 ± 8.89 88.69 ± 9.14 87.71 ± 9.61 87.96 ± 9.33 78.94 ± 20.22 77.12 ± 18.07 80.10 ± 8.82 73.53 ± 28.56 86.79 ± 9.11 58.27 ± 23.49

TemporalLobe_L 87.63 ± 12.37 87.18 ± 12.19 87.95 ± 11.72 87.27 ± 12.41 86.22 ± 12.68 86.69 ± 12.00 79.67 ± 22.85 78.71 ± 23.43 74.70 ± 17.31 77.11 ± 26.57 86.27 ± 11.54 82.33 ± 13.24

TemporalLobe_R 89.89 ± 8.22 88.93 ± 9.00 89.26 ± 8.24 88.38 ± 9.64 86.60 ± 11.24 87.81 ± 10.27 81.53 ± 17.32 81.52 ± 17.72 72.94 ± 17.02 74.25 ± 29.92 87.79 ± 8.14 83.04 ± 14.26

Thyroid 86.53 ± 11.01 86.72 ± 10.41 86.39 ± 10.92 86.09 ± 10.95 84.34 ± 10.97 86.13 ± 11.00 85.36 ± 11.15 84.96 ± 10.89 86.06 ± 10.09 83.76 ± 11.24 84.62 ± 10.06 75.31 ± 16.32

TMjoint_L 80.14 ± 12.74 80.05 ± 12.56 79.65 ± 12.71 79.67 ± 12.52 79.51 ± 12.85 78.90 ± 12.90 78.45 ± 13.18 77.54 ± 11.69 35.72 ± 23.12 78.98 ± 12.27 77.97 ± 14.18 72.57 ± 17.32

TMjoint_R 88.36 ± 7.82 87.89 ± 7.74 87.88 ± 7.31 87.33 ± 7.75 86.88 ± 7.63 87.14 ± 7.45 87.54 ± 7.66 85.69 ± 7.51 60.06 ± 21.32 86.12 ± 7.07 86.81 ± 6.75 71.81 ± 18.14

Trachea 78.04 ± 5.72 75.18 ± 5.83 75.29 ± 5.99 75.30 ± 5.88 77.00 ± 6.11 75.43 ± 6.20 72.45 ± 6.98 71.51 ± 6.74 73.97 ± 8.95 71.76 ± 7.44 68.10 ± 7.98 63.16 ± 12.94

TympanicCavity_L 75.71 ± 9.08 74.86 ± 8.49 75.12 ± 9.40 73.72 ± 9.52 72.54 ± 8.73 74.25 ± 8.92 72.38 ± 9.43 71.31 ± 8.80 60.59 ± 8.78 71.30 ± 9.25 69.36 ± 7.68 –

TympanicCavity_R 86.41 ± 9.70 85.86 ± 9.24 85.70 ± 9.89 84.77 ± 9.92 81.92 ± 9.81 85.15 ± 9.46 85.76 ± 9.97 79.19 ± 12.11 72.22 ± 10.29 81.37 ± 12.48 80.91 ± 9.54 –

VestibulSemi_L 89.19 ± 9.27 88.36 ± 8.94 88.58 ± 9.16 87.78 ± 9.05 87.08 ± 9.42 86.94 ± 9.34 86.50 ± 9.37 83.03 ± 10.55 86.02 ± 9.27 83.27 ± 10.44 67.15 ± 12.31 –

VestibulSemi_R 75.36 ± 17.45 75.87 ± 15.43 75.51 ± 16.01 74.97 ± 14.70 72.40 ± 18.46 74.68 ± 16.49 75.72 ± 16.48 74.74 ± 15.35 58.30 ± 12.54 74.66 ± 15.13 71.12 ± 14.15 –

Average 86.53 ± 12.85 86.09 ± 12.64 86.12 ± 12.79 85.33 ± 13.42 84.62 ± 13.62 84.96 ± 13.21 81.67 ± 18.56 79.18 ± 18.69 77.85 ± 18.04 76.94 ± 24.31 82.88 ± 14.01 –
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to enhance the stability of results, and the average of predictions was
taken as the final results.

4.2. Task02: GTV segmentation

Almost all teams submitted deep learning-based methods based on
nUNet (Isensee et al., 2021) structure. Nine of the submitted teams
sed end-to-end methods, in which two teams used pre-trained models,
nd the other two used two-stage approaches. Only one team used Dice
nd Focal loss, the others used similar loss functions that are Dice and
E loss. In this task, we employed the default nnUNet (Isensee et al.,

2021) without the test-time-augmentation strategy as the baseline, as
this task does not have symmetrical and complex structure organs.
o, the most noticeable difference between the data augmentation
trategies of Task02 and Task01 baselines was the presence or absence

of the mirror and flipping transformations.
(1st place, M. Astaraki et al.) Astaraki et al. used intensity distri-

ution harmonization and efficient cropping. The HU values of the
eCT and ncCT volumes were clamped into the range of [−1000, 1000]
nd [−600, 600], respectively, to better distinguish the cancer regions
rom nearby healthy tissues. To discard the background and irrelevant
natomical structures, the paired CT volumes were cropped based
n TotalSegmentor (Wasserthal et al., 2023) model and a connected
omponent analysis. The cropped paired CT images were used to train
 segmentation network based on the nnUNetV1 (Isensee et al., 2021)
ramework with 600 epochs using five-fold cross-validation. During
9 
inference, the test volumes were harmonized and cropped as training
data and then sent to the segmentation network for segmentation labels
over the cropped images.

(2nd place, Y. Ye et al.) Ye et al. employed the UniSeg (Ye et al.,
2023) model and ensemble strategy. In the training stage, each image
was divided into multiple 3D patches of identical size using a sliding
window approach, and then these patches were pre-processed following
nnUNet (Isensee et al., 2021). Then, UniSeg was trained using paired
atches with 1000 epochs. During inference, the entire image was
egmented into overlapping patches, and then each patch was sent to
he fine-tuned UniSeg to predict its corresponding segmentation map,
nd these individual patch-based predictions were aggregated as the
inal prediction.

(3rd place, Z. Xing et al.) Xing et al. used crop and test-time
augmentation strategies. Regions with HU values of [−175, 250] were
cropped for training. To improve the robustness of the segmentation
model, spatial- and intensity-based transforms are used. An ensemble
of five segmentation models based on UNet structure with different
batch sizes, parameter scales, and normalization methods was used to
generate a robust prediction. During inference, test-time augmentation
was used to improve the robustness of the prediction.

(4th place, K. Yang et al.) Yang et al. used nnUNet (Isensee et al.,
2021) for GTV segmentation, employing Dice loss and Focal loss (Lin
et al., 2017) to address the challenges of segmenting difficult GTVs.
Due to the variance in GTVs among patients, the sliding window
strategy was not used. During inference, test-time augmentation based
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Fig. 2. Boxplot of the patient-level average segmentation performance for OARs in terms of DSC and NSD.
Fig. 3. Boxplot of the patient-level average segmentation performance for GTVs in terms of DSC and NSD.
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on flipping was used to improve the segmentation performance.
(5th place, C. Ulrich et al.) Ulrich et al. employed MultiTalent (Ulrich

t al., 2023) model that is trained with multiple partially labeled
atasets. The model was initially pre-trained following the target
pacing, normalization scheme, and network topology suggested by
nUNet experiment planning for the SegRap2023. After pre-training,
he MultiTalent model was fine-tuned with paired CT images by only
pdating the segmentation heads for 10 epochs, and the whole network
as updated for a 50 epoch warm-up period. Finally, a Residual
ncoder UNet was initialized using the MultiTalent model and trained
or 2000 epochs to generate the final segmentation results.

(6th place, N. Ndipenoch et al.) Ndipenoch et al. proposed a nnUNet
with squeeze and excitation block (nnUNet_SE) model (Isensee et al.,
2021), where residual blocks were introduced to mitigate the problem
of vanishing gradients, and the squeeze-and-excitation block was in-
troduced to capture global features. The nnUNet_SE model was trained
with paired ncCT and ceCT scans, and each of the GTVs was trained
separately as binary segmentation tasks to improve the performance.

(7th place, Y. Su et al.) Su et al. used a vanilla nnUNet (Isensee
et al., 2021) to perform GTV segmentation. Almost all settings were
the same as those automatically generated by Isensee et al. (2021),
except for the patch size. A large patch size (48 × 256 × 256) was
used to improve the model’s performance. During inference, test-time
augmentation strategy was applied for robust segmentation results.

(8th place, J. Huang et al.) J. Huang et al. used two progressive steps
for GTV segmentation: coarse segmentation and fine segmentation.
The HU values of paired CT images were clipped to [−300, 1500]
10 
and then normalized to [−1, 1] by min–max normalization. In the
oarse segmentation stage, the recall rate was maximized to effectively
dentify tumor areas, after which the corresponding tumor regions were
ropped based on these initial results.. In the fine stage, a 3D UNet was
rained based on paired CT images and corresponding ROIs to refine

the coarse segmentation results.
(9th place, Y. Zhang et al.) Zhang et al. employed nnUNet (Isensee

et al., 2021) framework, incorporating cropping data and correspond-
ing label based on body bounding box. Data augmentation methods, in-
luding spatial-, intensity- and label-based transformation, were used to
nhance data diversity. Paired CT images were randomly cropped into
atches of size 28 × 224 × 224 and used to train a 3D full-resolution
Net based on nnUNet (Isensee et al., 2021). During inference, the
atch size was equal to the patch size during training, and the sliding
indow with a step size was half of the window size.

(10th place, C. Lee et al.) Lee et al. proposed a two-step meth-
ds, consisting of localization and segmentation. In the localization
tage, a 2D-based object detection network powered by the YOLO-
7 model (Wang et al., 2022) was used to identify a bounding box
ncompassing the GTVs. In the segmentation stage, different window
idths and levels were used for multi-channel input generation. A

segmentation network with DynUNet architecture was trained with
these multi-channel inputs to enhance the ability to distinguish de-
tailed features. During inference, ROIs were first extracted, and the
segmentation network was used to generate the final predictions.

(11th place, K. Huang et al.) K. Huang et al. employed nnUNetV2
(Isensee et al., 2021) framework, with settings consistent with those
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Fig. 4. Boxplot of the patient-level average segmentation performance for top 5 easiest and hardest OARs and 2 GTVs in terms of DSC. (a)–(e): top 5 easiest OARs, (f)–(j): top 5
ardest OARs.
used for Task01. During inference, various augmentations were applied,
including different region cropping and adjustments in scaling. The
final results were obtained by averaging the predictions under different
augmentations.

5. Results

5.1. Results of task01

The final ranking results of Task01 are listed in Table 7 sorted by
their scores. Table 8 and Table 9 present the detailed performance of
each team and the baseline on the OARs in terms of DSC and NSD,
respectively. It can be observed that the baseline achieved average
11 
DSC and NSD scores of 84.65% and 82.88%, respectively. A total of
six teams exceeded the baseline in terms of average DSC and NSD
scores. The winner (Y. Zhong et al.) achieved the best performance on
more than 30 OARs and ranked top 3 for most of the rest OARs. The
top 3 teams achieved promising performance with average DSC and
NSD scores over 86.14%±9.58% and 86.12%±12.79%, respectively.
Figs. 4 and 5(a)–(e) show the DSC and NSD score distributions of
the top 5 easiest OARs obtained by all the teams, suggesting that the
large-scale organs segmentations are well-solved consistently. How-
ever, these methods still perform poorly on some small, complex organs
as shown in (f) to (j) Figs. 4 and 5. Previous works (Tang et al., 2019;
Chen et al., 2021; Liao et al., 2022) performed clinical assessments
and found that most clinically acceptable segmentations have a good
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Fig. 5. Boxplot of the patient-level average segmentation performance for top 5 easiest and hardest OARs and 2 GTVs in terms of NSD. (a)–(e): top 5 easiest OARs, (f)–(j): top 5
hardest OARs.
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DSC score (DSC > 80%). However, in this challenge, the average
DSC and NSD of the chiasm and esophagus are around 72% and
77% respectively, which may be not clinically applicable without user
revision.

Fig. 2 provides the boxplots of DSC and NSD scores of each team
based on patient-level average segmentation. The best average Dice
and NSD scores were both achieved by Y. Zhong et al.. In general, the
patient-level average DSC and NSD scores achieved promising results
that are larger than 80%. In addition, to show the significance among
the top 3 teams with others, we calculated the paired t-test between

the ranking n-th team and the ranking (n+1)-th team (n ranges from

12 
1 to 3). Table 10 presents the statistical analysis results of the top
 teams. It can be observed that the winner is significantly superior
𝑝-value < 0.05) to the second place in terms of average DSC and
SD scores. However, there are no significant differences between the

econd and third teams, which averaged DSC scores are 86.36%±9.15%
nd 86.14%±9.58%, and NSD scores are 86.09% and 86.12%, respec-
ively. Compared with the fourth team which achieved average DSC
nd NSD scores of 85.62%±10.48% and 85.33%±13.42%, the third
eam achieved significantly better NSD scores (86.12%±12.79%) and
omparable DSC scores (86.14%±9.58%).
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Table 10
Summary of statistical significance analysis (𝑝-value) for the top 3 teams on the OAR segmentation task.

Team DSC NSD

Y. Zhong et al. Y. Ye et al. Y. Su et al. Y. Zhong et al. Y. Ye et al. Y. Su et al.

Brain 0.19 0.46 0.19 0.54 0.94 0.53
BrainStem 0.10 0.04 0.61 0.18 0.08 0.62
Chiasm 0.49 0.07 0.80 0.59 0.07 0.78
Cochlea_L 0.10 0.54 0.23 0.23 0.51 0.11
Cochlea_R 9e−4 0.60 0.20 3e−4 0.56 0.24
Esophagus 0.03 0.04 0.08 0.23 0.09 0.21
ETbone_L 0.01 0.04 0.14 0.02 0.04 0.07
ETbone_R 0.22 0.55 0.39 0.37 0.90 0.88
Eye_L 0.18 0.66 0.26 0.30 0.63 0.19
Eye_R 0.57 0.80 0.61 0.70 0.69 0.76
Hippocampus_L 0.53 0.74 0.77 0.77 0.96 0.64
Hippocampus_R 0.02 0.25 0.78 0.02 0.34 0.75
IAC_L 0.62 0.03 0.42 0.94 0.05 0.48
IAC_R 4e−7 0.86 0.16 2e−7 0.75 0.18
Larynx 4e−11 0.25 0.07 3e−6 0.21 0.11
Larynx_Glottic 0.18 0.07 0.10 0.90 0.23 0.13
Larynx_Supraglot 0.03 0.16 0.13 0.21 0.52 0.23
Lens_L 0.14 0.21 0.81 0.21 0.95 0.21
Lens_R 0.13 0.12 0.30 0.11 0.46 0.64
Mandible_L 0.24 0.07 0.90 0.94 0.45 0.79
Mandible_R 0.34 8e−5 4e−3 0.72 0.50 0.41
Mastoid_L 0.26 0.33 0.39 0.37 0.64 0.21
Mastoid_R 0.21 0.04 0.44 0.32 0.69 0.30
MiddleEar_L 0.80 0.16 0.40 0.77 0.82 0.25
MiddleEar_R 5e−6 4e−6 2e−4 9e−3 5e−6 4e−4
OpticNerve_L 0.54 0.20 0.38 0.30 0.36 0.94
OpticNerve_R 0.13 0.82 0.39 0.11 0.68 0.19
OralCavity 7e−2 0.29 4e−8 0.08 0.51 7e−9
Parotid_L 0.02 0.65 8e−5 0.06 0.51 3e−10
Parotid_R 0.34 0.74 0.13 0.86 0.22 0.08
PharynxConst 0.60 0.27 0.20 0.74 0.32 0.11
Pituitary 0.89 0.54 0.42 0.96 0.39 0.38
SpinalCord 0.07 0.68 0.06 0.11 0.40 0.23
Submandibular_L 0.18 0.66 0.02 0.10 0.54 0.05
Submandibular_R 0.71 0.03 0.68 0.33 0.06 0.95
TemporalLobe_L 0.18 0.35 0.44 0.35 0.35 0.49
TemporalLobe_R 0.09 0.49 0.35 0.11 0.55 0.35
Thyroid 0.17 0.33 0.08 0.33 0.13 0.17
TMjoint_L 0.81 0.91 0.34 0.87 0.45 0.97
TMjoint_R 4e−3 0.66 0.29 0.14 0.98 0.16
Trachea 3e−5 0.50 0.92 2e−8 0.70 1.00
TympanicCavity_L 5e−3 0.08 4e−3 0.04 0.55 2e−3
TympanicCavity_R 4e−5 0.35 0.04 0.06 0.61 3e−3
VestibulSemi_L 2e−3 0.96 0.02 8e−3 0.39 0.02
VestibulSemi_R 0.30 0.16 0.36 0.35 0.37 0.34

Average 1e−6 0.08 0.15 2e−5 0.88 0.03
Table 11
Rankings of methods in terms of DSC and NSD scores for GTV segmentation.

Method DSC Rank NSD Rank Overall

GTVp GTVnd Average GTVp GTVnd Average

M. Astaraki et al. 3 4 3.5 1 4 2.5 1
Y. Ye et al. 2 3 2.5 2 6 4 2
Z. Xing et al. 7 1 4 3 2 2.5 3
K. Yang et al. 1 5 3 4 5 4.5 4
C. Ulrich et al. 8 2 5 6 1 3.5 5
N. Ndipenoch et al. 5 6 5.5 5 3 4 6
Y. Su et al. 6 7 6.5 7 7 7 7
J. Huang et al. 4 8 6 8 8 8 8
Y. Zhang et al. 10 9 9.5 9 9 9 9
C. Lee et al. 9 11 10 10 11 10.5 10
K. Huang et al. 11 10 10.5 11 10 10.5 11
13 
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Table 12
Summary of the quantitative evaluation results of GTVp and GTVnd segmentation by the eleven teams.

Team DSC (%) NSD (%)

GTVp GTVnd Average GTVp GTVnd Average

M. Astaraki et al. 78.56 ± 7.54 67.75 ± 14.64 73.15 ± 12.83 36.61 ± 12.17 63.15 ± 16.24 49.88 ± 19.55
Y. Ye et al. 78.76 ± 7.16 68.10 ± 12.17 73.43 ± 11.31 36.45 ± 11.70 62.26 ± 15.57 49.36 ± 18.87
Z. Xing et al. 78.07 ± 7.82 69.28 ± 12.12 73.68 ± 11.11 36.44 ± 12.25 64.04 ± 14.37 50.24 ± 19.20
K. Yang et al. 78.76 ± 6.60 67.41 ± 13.78 73.09 ± 12.21 35.92 ± 11.05 63.08 ± 15.37 49.50 ± 19.07
C. Ulrich et al. 77.71 ± 7.79 69.18 ± 12.80 73.44 ± 11.42 35.60 ± 11.66 64.76 ± 15.04 50.18 ± 19.84
N. Ndipenoch et al. 78.25 ± 7.54 67.21 ± 14.52 72.73 ± 12.82 35.90 ± 11.87 63.31 ± 15.78 49.61 ± 19.56
Y. Su et al. 78.13 ± 7.27 66.91 ± 14.54 72.52 ± 12.79 35.21 ± 11.11 62.24 ± 16.00 48.73 ± 19.30
J. Huang et al. 78.36 ± 7.09 66.36 ± 14.09 72.36 ± 12.66 34.18 ± 10.26 61.96 ± 15.48 48.07 ± 19.12
Y. Zhang et al. 76.89 ± 7.37 66.25 ± 12.74 71.57 ± 11.69 33.22 ± 10.66 60.30 ± 13.94 46.76 ± 18.37
C. Lee et al. 77.46 ± 7.53 63.39 ± 13.85 70.42 ± 13.18 32.96 ± 10.69 55.62 ± 14.51 44.29 ± 17.05
K. Huang et al. 76.71 ± 6.85 65.97 ± 12.04 71.34 ± 11.17 32.76 ± 9.61 59.70 ± 13.34 46.23 ± 17.79

Baseline 75.80 ± 7.28 66.83 ± 11.48 71.32 ± 10.61 33.41 ± 11.61 61.49 ± 13.06 47.45 ± 18.70
Table 13
Summary of statistical significance analysis (𝑝-value) for the top 3 teams on the GTV segmentation task.

Team DSC NSD

M. Astaraki et al. Y. Ye et al. Z. Xing et al. M. Astaraki et al. Y. Ye et al. Z. Xing et al.

GTVp 0.55 0.16 0.18 0.81 0.99 0.54
GTVnd 0.68 0.17 0.12 0.30 0.04 0.34

Average 0.55 0.60 0.41 0.38 0.13 0.32
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5.2. Results of Task02

Table 11 presents the final ranking scores of the GTV segmentation.
t can be seen that M. Astaraki et al. won first place with an average
anking score of 3. Y. Ye et al. and Z. Xing et al. achieved the same
verage ranking score of 3.25, but the standard deviation of Y. Ye et al.
as smaller, so the final ranking results were that Y. Ye et al. and Z.
ing et al. won the second and third places, respectively. The detailed
erformance of all teams and the baseline (pure nnUNet with a default
etting of 3d_fullres) is shown in Table 12 and Fig. 3. A total of 10

and 8 teams outperformed the baseline in terms of average DSC and
NSD scores, respectively, as shown in (k) and (l) in Fig. 4) and Fig. 5.
Four teams obtained encouraging performance with average DSC scores
greater than 73%. In addition, all submissions of Task02 performed well
on the GTVp segmentation with DSC higher than 76.71%±6.85%, and
the DSC scores in GTVnd segmentation have a larger variability ranging
from 63.39%±13.85% to 69.28%±12.12%. In addition, we also found
that most of the methods cannot achieve promising performances on
oth GTVp and GTVnd segmentation at the same time. These results
emonstrated that the automatic GTVp and GTVs contouring is still a
hallenging and unsolved problem, and more attention should be paid
o improve the segmentation performance further.

Different from the results of Task01, these teams that used nnUNet
r its variants achieved similar results on the GTV segmentation task.
he average performance gap between the winner and the 11-𝑡ℎ rank-

ing team was nearly 2 and 3 percentage points in terms of DSC and
NSD scores. Compared with the pure nnUNet baseline (the last line in
Table 12), eight teams achieved better results in both terms of DSC
nd NSD scores. Although the segmentation results are consistent and
obust, there are huge performance gaps between these methods and
eal clinical requirements according to previously reported user studies
nd clinical assessments (Lin et al., 2019; Liao et al., 2022; Luo et al.,

2023), where the DSC of the clinically applicable results ranged from
0% to 90%.

Fig. 3 shows the boxplots of DSC and NSD from the patient-level
GTV segmentation of each team. M. Astaraki et al. achieved the best
average DSC and NSD scores. It can be seen that the median of
patient-level average DSC and NSD scores of Y. Ye et al. were both
lower than that of Z. Xing et al.. The fourth place achieved similar
14 
performances with Z. Xing et al. at patient-level. Table 13 presents a
detailed statistical analysis of the top 3 teams. The results show that
here are no significant performance differences in terms of DSC and

NSD scores between the winner and the second-place method except
for the numerical values and the ranking scores. Similar trends can
be found in the pair of the second and third places, no significant
performance differences were found except for the NSD score in GTVnd
segmentation. Besides, it can be noticed from Tables 12 and 13 that Z.
Xing et al. obtained the best average performance in both terms of DSC
and NSD, but this team ranked on the third place due to the low overall
ranking score. In addition, C. Ulrich et al. achieved the best NSD and
second DSC in GTVnd segmentation and were not even included in the
top 3 teams yet caused by the insufficient results in GTVp segmentation.
These results show the ranking scheme of this challenge (rank-then-
aggregate (Dorent et al., 2023)) is robust and alleviates the impact of
some extremely good or bad results.

5.3. Visualization

Fig. 6 visually presents the OAR segmentation outcomes from the
op three performing teams. To show segmentation differences, we se-
ected three patients based on the lower quartile (LQ), median quartile
MQ), and high quartile (HQ) of the average DSC and NSD scores
cross the top three teams and the 45 OARs. The results highlight that
hese methods achieve accurate segmentations for larger organs such
s BrainStem, Parotid_L, and Parotid_R. However, challenges persist
n accurately segmenting small and intricate organs. For instance, the
hiasm exhibits under-segmentation, particularly in the case of the LQ
atient. Fig. 7 visualizes the GTV segmentation results of the top 3

teams. These results show that the GTVp and GTVnd segmentation are
still challenging. Specifically, most GTVp segmentation results suffer
rom under-segmentation (in HQ, MQ and LQ patients). Additionally,

some GTVnd cannot even be identified and segmented in the case of
the LQ patient. These findings highlight the challenge of achieving
precise and automated GTV segmentation, which warrants heightened

attention and further investigation.
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Fig. 6. Qualitative OAR segmentation using the Top3 teams and baseline on the SegRap2023 testing set.
6. Discussion

6.1. OAR segmentation in head and neck

All submitted algorithms demonstrated that supervised learning can
achieve promising mean performance (>80%) in terms of DSC and
NSD scores. However, the results of some complex OARs are still not
good enough (<80%). The reason may be most of these solutions are
based on one-stage segmentation and do not apply specific designs
for complex or small organs. The winner’s solution demonstrated that
structure-specific label generation and boundary refinement can obtain
encouraging performance improvement over the baseline. Meanwhile,
15 
imbalance problems and inequality optimization exist when segmenting
45 OARs directly. Applying the balance loss (Lin et al., 2017) and
stratified optimization (Ye et al., 2022) may improve the segmenta-
tion performance of the small and complex OAR, but there are no
participants that have investigated the performance of these methods.

Interestingly, almost all teams used nnUNet (Isensee et al., 2021) or
its variants as the baseline, but their performances were hugely differ-
ent. For example, the performance of the winner and the K. Huang et al.
methods is significantly different, 86.70%±9.30% vs 78.14%±23.65%
in terms of DSC score. Meanwhile, four teams performed worse than the
baseline, removing some spatial data augmentations and highlighting
the necessity of designing specific data-processing strategies, network
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Fig. 7. Qualitative GTV segmentation using the Top3 teams and baseline on the SegRap2023 testing set.
modules, training, or testing approaches for this task according to the
data characteristics. Specifically, the data process and augmentations
significantly impact performance, such as the winner merging the left
and right counterparts into one and removing the mirror augmentation
strategy, leading to the most significant improvement on the original
nnUNetV2. Besides, the model ensemble also leads to performance dif-
ferences, but it does not mean it can consistently improve performance
by increasing the model numbers. These findings can provide some
insights for powerful OAR segmentation model development where
some appropriate data augmentation and pre- or post-processing are
important and should be tuned based on the data characteristics.

Recently, the universal model with transfer learning has shown
promising performance on multiple medical image segmentation tasks
(Liu et al., 2023; Ye et al., 2023; Wang et al., 2023b). The second
place solution shows the transferable ability of the universal model (Ye
et al., 2023) from other tasks to the head and neck OAR segmentation.
The third place method proved that large patch size and simple task-
driven data processing methods except for mirror operation can boost
segmentation performance. Note that although with different datasets,
the top 3 teams reached a promising performance with an average DSC
of above 86.14%±9.58%, which is superior to previous head and neck
OAR segmentation studies with an average DSC of below 84.5% (Tang
et al., 2019; Gao et al., 2021; Lei et al., 2021). These results also
provided a fair baseline and benchmarking results for further research.

6.2. NPC GTV segmentation

All submitted methods for GTV segmentation obtained comparable
results. The top 3 teams applied the two-stage segmentation with
intensity distribution harmonization, transfer learning, and test-time
augmentation strategies to handle the inherent and challenging prob-
lems in GTV segmentation, respectively. However, none of the top
3 teams surpassed 80% in terms of DSC or NSD scores, and the
visualization in Fig. 7 shows there are under-segmentation and even
targets missing. Besides, the results show that the training strate-
gies do not lead to significant performance differences except the
intensity-based data augmentations, suggesting that we should choose
suitable intensity-based augmentation methods when developing high-
performance GTV segmentation models. In addition, there are still huge
segmentation performance gaps between the challenge benchmarks
(average DSC of 75.8%±7.28% and 66.83%±11.48% for GTVp and
GTVnd) and previous works (average DSC of 79.0% and 74.0% for
GTVp and GTVnd) (Luo et al., 2023; Li et al., 2022; Liao et al.,
16 
2022; Lin et al., 2019; Wang et al., 2024). The main reason caused
the performance gaps is that these works segmented the GTV from
multi-sequence MRI, where the MRI has higher quality and clearer
contrast between normal tissue and GTV. However, most planning, dose
estimation and radiation treatment were performed based on CT and
MRI was just used as a delineation reference modality. Recently, Mei
et al. (2021) reported the performance of NPC GTV segmentation from
CT is 65.66% (won the second place in StructSeg2019) which conforms
to the findings of this challenge. These results highlight the urgency
of developing an accurate GTV segmentation method to handle the
inherent challenges and further evaluate in the clinical practice.

There are some potential directions to enhance the GTV segmen-
tation performance: (1) exploiting the position and boundary-aware
feature attention method to describe the variable location and irregular
boundary of GTV (Li et al., 2022); (2) investigating the performance
improvement by using the OAR segmentation to provide the anatomical
information. (3) mining the complementary information across ncCT
and ceCT scans to highlight the target representation, which not be
noticed by recent works; (4) employing pre-trained models to capture
comprehensive common semantic features for targets (Ye et al., 2023).

6.3. The gap between clinically applicable segmentation

The ultimate goal of developing automatic OAR and GTV segmen-
tation methods is to accelerate the clinical delineation workflow and
reduce the radiation oncologists’ burden. In clinical practice, most
automatic segmentation methods cannot be applied directly and need
radiation oncologists to refine, especially for the online IMRT sys-
tem (Luo et al., 2021). Recent studies (Tang et al., 2019) claimed that
the deep learning-based automatic contouring system with a mean DSC
of 78.34% over 28 OARs was clinically applicable after minor revision.
Some studies (Liao et al., 2022; Luo et al., 2023) also performed clinical
studies on GTVp and GTVnd segmentation and showed that the deep
learning segmentation system can be clinically accepted with few re-
finements when the DSC of GTVp and GTVnd are greater than 83% and
80%. According to these studies, most solutions for the SegRap2023
challenge have achieved clinically applicable results for most OARs.
However, there are still huge gaps between the performance of these
methods and the clinically acceptable results for the GTVs.

6.4. Limitation and future direction

Compared with the abdominal organ and tumor segmentation (Luo
et al., 2022a; Gibson et al., 2018; Isensee et al., 2021), there are very
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few works that have built large-scale datasets and comprehensively
valuated the performance of recent methods for the OARs and GTVs of
ead and neck cancer. Although this work has developed a large-scale

dataset and evaluated more than ten cut-edge methods, it still faces lim-
tations in terms of robustness and generalization evaluation, primarily

attributed to the absence of a multi-center dataset. Additionally, the
dataset exclusively focuses on NPC patients, overlooking the diverse
range of patients encompassed by head and neck cancer. Despite the
inclusion of annotations for 45 OARs and 2 GTVs in the SegRap2023
challenge, there is an omission of several radiotherapy-required Clinical
Target Volumes (CTV). To address these shortcomings, we plan to
enlarge the scale of the dataset and data source and further extend the
segmentation tasks to more categories in the future.

7. Conclusion

This work summarizes the submitted methods from the SegRap2023
hallenge, which provides 200 paired CT scans for the segmentation of
5 OARs and 2 GTVs for NPC patients. To the best of our knowledge,

SegRap2023 has the most comprehensive and exhausted labeled dataset
among existing OAR and GTV segmentation challenges so far. A total
f ten and eleven algorithms successfully submitted their solutions
hat met the challenge requirements. They were benchmarked for
omparisons in the OAR and GTV segmentation, respectively, and their

methods and results were analyzed. The results demonstrate that most
arge-size OARs can be segmented accurately and can be seen as a well-
olved problem. However, for the small-size OARs and GTVs, there
re still huge gaps between segmentation performance and clinical
pplicability, suggesting that future research should focus on these
nsolved problems more. In the future, we plan to extend this challenge
n the aspect of data scale, source, and categories to be more suitable
or the clinical requirement.

CRediT authorship contribution statement

Xiangde Luo: Writing – original draft, Validation, Investigation,
ata curation, Conceptualization. Jia Fu: Writing – original draft,
isualization, Validation, Methodology, Conceptualization. Yunxin
hong: Methodology. Shuolin Liu: Methodology. Bing Han:
ethodology. Mehdi Astaraki: Methodology. Simone Bendazzoli:
ethodology. Iuliana Toma-Dasu: Methodology. Yiwen Ye:

Methodology. Ziyang Chen: Methodology. Yong Xia: Methodol-
ogy. Yanzhou Su: Methodology. Jin Ye: Methodology. Junjun
He: Methodology. Zhaohu Xing: Methodology. Hongqiu Wang:
Methodology. Lei Zhu: Methodology. Kaixiang Yang: Methodology.
Xin Fang: Methodology. Zhiwei Wang: Methodology. Chan Woong
Lee: Methodology. Sang Joon Park: Methodology. Jaehee Chun:
Methodology. Constantin Ulrich: Methodology. Klaus H. Maier-
Hein: Methodology. Nchongmaje Ndipenoch: Methodology. Alina
Miron: Methodology. Yongmin Li: Methodology. Yimeng Zhang:
Methodology. Yu Chen: Methodology. Lu Bai: Methodology.
Jinlong Huang: Methodology. Chengyang An: Methodology.
Lisheng Wang: Methodology. Kaiwen Huang: Methodology. Yunqi
Gu: Methodology. Tao Zhou: Methodology. Mu Zhou: Writing
– review & editing, Supervision, Resources. Shichuan Zhang:

esources, Data curation. Wenjun Liao: Resources, Data curation.
uotai Wang: Writing – review & editing, Resources, Project
dministration, Funding acquisition, Formal analysis. Shaoting
hang: Supervision, Software, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.
17 
Acknowledgments

This work was supported by the National Natural Science Foun-
ation of China [Grant 62271115, Grant 82203197], the Sichuan Sci-
nce and Technology Program, China (Grant 2022YFSY0055, 2023NS-
SC1852), the Sichuan Provincial Cadre Health Research Project (Grant/
ward number: 2023-803) and the Radiation Oncology Key Laboratory
f Sichuan Province Open Fund (2022ROKF04). We would like to thank
.D. S.C. Zhang, M.D. W. Liao, M.D. Y. Zhao, M.D. C. Li and their team
embers for data collection, annotation, and checking. We also would

ike to thank the support team of the Grand Challenge Platform and
he MICCAI challenge organization team for their help while hosting
he challenge.

Data availability

Data will be made available on request.

References

Amin, M.B., Greene, F.L., Edge, S.B., Compton, C.C., Gershenwald, J.E., Brookland, R.K.,
Meyer, L., Gress, D.M., Byrd, D.R., Winchester, D.P., 2017. The eighth edition AJCC
cancer staging manual: continuing to build a bridge from a population-based to a
more ‘‘personalized’’ approach to cancer staging. CA: Cancer J. Clin. 67 (2), 93–99.

Ang, K.K., Zhang, Q., Rosenthal, D.I., Nguyen-Tan, P.F., Sherman, E.J., Weber, R.S.,
Galvin, J.M., Bonner, J.A., Harris, J., El-Naggar, A.K., et al., 2014. Randomized
phase III trial of concurrent accelerated radiation plus cisplatin with or without
cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol.
32 (27), 2940.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.,
Berger, C., Ha, S., Rozycki, M., et al., 2018. Identifying the best machine learning
algorithms for brain tumor segmentation, progression assessment, and overall
survival prediction in the BRATS challenge. arXiv Preprint arXiv:1811.02629.

Bilic, P., Christ, P.F., Vorontsov, E., Chlebus, G., Chen, H., Dou, Q., Fu, C.W., Han, X.,
Heng, P.A., Hesser, J., et al., 2023. The liver tumor segmentation benchmark (LiTS).
Med. Image Anal. 84, 102680.

Chen, X., Sun, S., Bai, N., Han, K., Liu, Q., Yao, S., Tang, H., Zhang, C., Lu, Z.,
Huang, Q., et al., 2021. A deep learning-based auto-segmentation system for
organs-at-risk on whole-body computed tomography images for radiation therapy.
Radiother. Oncol. 160, 175–184.

Chua, M.L., Wee, J.T., Hui, E.P., Chan, A.T., 2016. Nasopharyngeal carcinoma. Lancet
387 (10022), 1012–1024.

Dong, X., Lei, Y., Wang, T., Thomas, M., Tang, L., Curran, W.J., Liu, T., Yang, X., 2019.
Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med.
Phys. 46 (5), 2157–2168.

Dorent, R., Kujawa, A., Ivory, M., Bakas, S., Rieke, N., Joutard, S., Glocker, B.,
Cardoso, J., Modat, M., Batmanghelich, K., et al., 2023. CrossMoDA 2021 chal-
lenge: Benchmark of cross-modality domain adaptation techniques for vestibular
schwannoma and cochlea segmentation. Med. Image Anal. 83, 102628.

Feng, X., Qing, K., Tustison, N.J., Meyer, C.H., Chen, Q., 2019. Deep convolutional
neural network for segmentation of thoracic organs-at-risk using cropped 3D
images. Med. Phys. 46 (5), 2169–2180.

Gao, Y., Huang, R., Chen, M., Wang, Z., Deng, J., Chen, Y., Yang, Y., Zhang, J., Tao, C.,
Li, H., 2019. FocusNet: imbalanced large and small organ segmentation with an
end-to-end deep neural network for head and neck CT images. In: Medical Image
Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International
Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22.
Springer, pp. 829–838.

Gao, Y., Huang, R., Yang, Y., Zhang, J., Shao, K., Tao, C., Chen, Y., Metaxas, D.N.,
Li, H., Chen, M., 2021. FocusNetv2: Imbalanced large and small organ segmentation
with adversarial shape constraint for head and neck CT images. Med. Image Anal.
67, 101831.

Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., David-
son, B., Pereira, S.P., Clarkson, M.J., Barratt, D.C., 2018. Automatic multi-organ
segmentation on abdominal CT with dense V-networks. TMI 37 (8), 1822–1834.

Guo, D., Jin, D., Zhu, Z., Ho, T.Y., Harrison, A.P., Chao, C.H., Xiao, J., Lu, L., 2020.
Organ at risk segmentation for head and neck cancer using stratified learning
and neural architecture search. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 4223–4232.

He, W., Zhang, C., Dai, J., Liu, L., Wang, T., Liu, X., Jiang, Y., Li, N., Xiong, J., Wang, L.,
et al., 2024. A statistical deformation model-based data augmentation method for
volumetric medical image segmentation. Med. Image Anal. 91, 102984.

http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb1
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb2
http://arxiv.org/abs/1811.02629
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb4
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb4
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb4
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb4
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb4
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb5
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb6
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb6
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb6
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb7
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb7
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb7
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb7
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb7
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb8
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb9
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb9
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb9
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb9
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb9
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb10
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb11
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb12
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb12
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb12
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb12
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb12
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb13
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb14
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb14
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb14
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb14
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb14


X. Luo et al. Medical Image Analysis 101 (2025) 103447 
Huang, Z., Wang, H., Deng, Z., Ye, J., Su, Y., Sun, H., He, J., Gu, Y., Gu, L., Zhang, S.,
et al., 2023. STU-net: Scalable and transferable medical image segmentation models
empowered by large-scale supervised pre-training. arXiv Preprint arXiv:2304.06716.

Iglesias, J.E., Sabuncu, M.R., 2015. Multi-atlas segmentation of biomedical images: a
survey. Med. Image Anal. 24 (1), 205–219.

Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H., 2021. nnU-Net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18 (2), 203–211.

Kam, M.K., Chau, R.M., Suen, J., Choi, P.H., Teo, P.M., 2003. Intensity-modulated
radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional
plans and feasibility of dose escalation. Int. J. Radiat. Oncology* Biology* Phys.
56 (1), 145–157.

Kosmin, M., Ledsam, J., Romera-Paredes, B., Mendes, R., Moinuddin, S., de Souza, D.,
Gunn, L., Kelly, C., Hughes, C., Karthikesalingam, A., et al., 2019. Rapid advances
in auto-segmentation of organs at risk and target volumes in head and neck cancer.
Radiother. Oncol. 135, 130–140.

Lee, A., Ma, B., Ng, W.T., Chan, A., et al., 2015. Management of nasopharyngeal
carcinoma: current practice and future perspective. J. Clin. Oncol. 33 (29),
3356–3364.

Lee, A.W., Ng, W.T., Pan, J.J., Poh, S.S., Ahn, Y.C., AlHussain, H., Corry, J.,
Grau, C., Grégoire, V., Harrington, K.J., et al., 2018. International guideline for
the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma.
Radiother. Oncol. 126 (1), 25–36.

Lei, W., Mei, H., Sun, Z., Ye, S., Gu, R., Wang, H., Huang, R., Zhang, S., Zhang, S.,
Wang, G., 2021. Automatic segmentation of organs-at-risk from head-and-neck
CT using separable convolutional neural network with hard-region-weighted loss.
Neurocomputing 442, 184–199.

Li, Y., Dan, T., Li, H., Chen, J., Peng, H., Liu, L., Cai, H., 2022. NPCNet: jointly
segment primary nasopharyngeal carcinoma tumors and metastatic lymph nodes
in MR images. IEEE Trans. Med. Imaging 41 (7), 1639–1650.

Li, S., Xiao, J., He, L., Peng, X., Yuan, X., 2019. The tumor target segmentation of
nasopharyngeal cancer in CT images based on deep learning methods. Technol.
Cancer Res. Treat. 18, 1533033819884561.

Liao, W., He, J., Luo, X., Wu, M., Shen, Y., Li, C., Xiao, J., Wang, G., Chen, N., 2022.
Automatic delineation of gross tumor volume based on magnetic resonance imaging
by performing a novel semisupervised learning framework in nasopharyngeal
carcinoma. Int. J. Radiat. Oncology* Biology* Phys. 113 (4), 893–902.

Lin, L., Dou, Q., Jin, Y.M., Zhou, G.Q., Tang, Y.Q., Chen, W.L., Su, B.A., Liu, F.,
Tao, C.J., Jiang, N., et al., 2019. Deep learning for automated contouring of primary
tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291 (3), 677–686.

Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object
detection. In: ICCV. pp. 2980–2988.

Liu, Y., Yuan, X., Jiang, X., Wang, P., Kou, J., Wang, H., Liu, M., 2021. Dilated
adversarial U-net network for automatic gross tumor volume segmentation of
nasopharyngeal carcinoma. Appl. Soft Comput. 111, 107722.

Liu, J., Zhang, Y., Chen, J.N., Xiao, J., Lu, Y., A Landman, B., Yuan, Y., Yuille, A.,
Tang, Y., Zhou, Z., 2023. Clip-driven universal model for organ segmentation and
tumor detection. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 21152–21164.

Luo, X., Liao, W., He, Y., Tang, F., Wu, M., Shen, Y., Huang, H., Song, T., Li, K.,
Zhang, S., et al., 2023. Deep learning-based accurate delineation of primary gross
tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance
imaging: A large-scale and multi-center study. Radiother. Oncol. 180, 109480.

Luo, X., Liao, W., Xiao, J., Chen, J., Song, T., Zhang, X., Li, K., Metaxas, D.N., Wang, G.,
Zhang, S., 2022a. WORD: A large scale dataset, benchmark and clinical applicable
study for abdominal organ segmentation from CT image. Med. Image Anal. 82,
102642.

Luo, X., Wang, G., Liao, W., Chen, J., Song, T., Chen, Y., Zhang, S., Metaxas, D.N.,
Zhang, S., 2022b. Semi-supervised medical image segmentation via uncertainty
rectified pyramid consistency. Med. Image Anal. (ISSN: 1361-8415) 80, 102517.

Luo, X., Wang, G., Song, T., Zhang, J., Aertsen, M., Deprest, J., Ourselin, S.,
Vercauteren, T., Zhang, S., 2021. MIDeepSeg: Minimally interactive segmentation
of unseen objects from medical images using deep learning. Med. Image Anal. 72,
102102.

Maier-Hein, L., Reinke, A., Kozubek, M., Martel, A.L., Arbel, T., Eisenmann, M.,
Hanbury, A., Jannin, P., Müller, H., Onogur, S., et al., 2020. BIAS: Transparent
reporting of biomedical image analysis challenges. Med. Image Anal. 66, 101796.

Mei, H., Lei, W., Gu, R., Ye, S., Sun, Z., Zhang, S., Wang, G., 2021. Automatic
segmentation of gross target volume of nasopharynx cancer using ensemble of
multiscale deep neural networks with spatial attention. Neurocomputing 438,
211–222.

Nikolov, S., Blackwell, S., Zverovitch, A., Mendes, R., Livne, M., De Fauw, J., Patel, Y.,
Meyer, C., Askham, H., Romera-Paredes, B., et al., 2021. Clinically applicable
segmentation of head and neck anatomy for radiotherapy: deep learning algorithm
development and validation study. J. Med. Internet Res. 23 (7), e26151.

Oreiller, V., Andrearczyk, V., Jreige, M., Boughdad, S., Elhalawani, H., Castelli, J.,
Vallieres, M., Zhu, S., Xie, J., Peng, Y., et al., 2022. Head and neck tumor
segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336.
18 
Podobnik, G., Strojan, P., Peterlin, P., Ibragimov, B., Vrtovec, T., 2023. HaN-Seg: The
head and neck organ-at-risk CT and MR segmentation dataset. Med. Phys. 50 (3),
1917–1927.

Raudaschl, P.F., Zaffino, P., Sharp, G.C., Spadea, M.F., Chen, A., Dawant, B.M., Al-
brecht, T., Gass, T., Langguth, C., Lüthi, M., et al., 2017. Evaluation of segmentation
methods on head and neck CT: auto-segmentation challenge 2015. Med. Phys. 44
(5), 2020–2036.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18. Springer, pp. 234–241.

Sahbaee, P., Abadi, E., Segars, W.P., Marin, D., Nelson, R.C., Samei, E., 2017. The
effect of contrast material on radiation dose at CT: Part II. A systematic evaluation
across 58 patient models. Radiology 283 (3), 749–757.

Shi, F., Hu, W., Wu, J., Han, M., Wang, J., Zhang, W., Zhou, Q., Zhou, J., Wei, Y.,
Shao, Y., et al., 2022. Deep learning empowered volume delineation of whole-body
organs-at-risk for accelerated radiotherapy. Nature Commun. 13 (1), 6566.

Sun, X.S., Liu, S.L., Luo, M.J., Li, X.Y., Chen, Q.Y., Guo, S.S., Wen, Y.F., Liu, L.T.,
Xie, H.J., Tang, Q.N., et al., 2019. The association between the development
of radiation therapy, image technology, and chemotherapy, and the survival of
patients with nasopharyngeal carcinoma: a cohort study from 1990 to 2012. Int.
J. Radiat. Oncology* Biology* Phys. 105 (3), 581–590.

Tang, H., Chen, X., Liu, Y., Lu, Z., You, J., Yang, M., Yao, S., Zhao, G., Xu, Y.,
Chen, T., et al., 2019. Clinically applicable deep learning framework for organs
at risk delineation in CT images. Nat. Mach. Intell. 1 (10), 480–491.

Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H., 2023.
MultiTalent: A multi-dataset approach to medical image segmentation. In: MICCAI.
pp. 648–658.

Vallieres, M., Kay-Rivest, E., Perrin, L.J., Liem, X., Furstoss, C., Aerts, H.J.,
Khaouam, N., Nguyen-Tan, P.F., Wang, C.S., Sultanem, K., et al., 2017. Radiomics
strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep.
7 (1), 10117.

Wang, H., Chen, J., Zhang, S., He, Y., Xu, J., Wu, M., He, J., Liao, W., Luo, X., 2024.
Dual-reference source-free active domain adaptation for nasopharyngeal carcinoma
tumor segmentation across multiple hospitals. IEEE Trans. Med. Imaging 43 (12),
4078–4090.

Wang, R., Kang, M., 2021. Guidelines for radiotherapy of nasopharyngeal carcinoma.
Precis. Radiat. Oncol. 5 (3), 122–159.

Wang, D., Wang, X., Wang, L., Li, M., Da, Q., Liu, X., Gao, X., Shen, J., He, J., Shen, T.,
et al., 2023a. MedFMC: A real-world dataset and benchmark for foundation model
adaptation in medical image classification. arXiv Preprint arXiv:2306.09579.

Wang, Y., Wang, H., Xin, Z., 2022. Efficient detection model of steel strip surface
defects based on YOLO-V7. IEEE Access 10, 133936–133944.

Wang, G., Wu, J., Luo, X., Liu, X., Li, K., Zhang, S., 2023b. MIS-FM: 3D medical image
segmentation using foundation models pretrained on a large-scale unannotated
dataset. arXiv Preprint arXiv:2306.16925.

Wang, X., Yang, G., Zhang, Y., Zhu, L., Xue, X., Zhang, B., Cai, C., Jin, H., Zheng, J.,
Wu, J., et al., 2020. Automated delineation of nasopharynx gross tumor volume
for nasopharyngeal carcinoma by plain CT combining contrast-enhanced CT using
deep learning. J. Radiat. Res. Appl. Sci. 13 (1), 568–577.

Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T.,
Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M., 2023. TotalSegmentator:
Robust segmentation of 104 anatomic structures in CT images. Radiology: Artif.
Intell. 5 (5), e230024.

Wu, Y., Luo, X., Xu, Z., Guo, X., Ju, L., Ge, Z., Liao, W., Cai, J., 2024. Diver-
sified and personalized multi-rater medical image segmentation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
11470–11479.

Xia, P., Fu, K.K., Wong, G.W., Akazawa, C., Verhey, L.J., 2000. Comparison of treatment
plans involving intensity-modulated radiotherapy for nasopharyngeal carcinoma.
Int. J. Radiat. Oncology* Biology* Phys. 48 (2), 329–337.

Ye, X., Guo, D., Ge, J., Yan, S., Xin, Y., Song, Y., Yan, Y., Huang, B.-s., Hung, T.M.,
Zhu, Z., et al., 2022. Comprehensive and clinically accurate head and neck cancer
organs-at-risk delineation on a multi-institutional study. Nature Commun. 13 (1),
6137.

Ye, Y., Xie, Y., Zhang, J., Chen, Z., Xia, Y., Xia, Y., 2023. UniSeg: A prompt-
driven universal segmentation model as well as a strong representation learner.
In: MICCAI. pp. 508—518.

Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G., 2006.
User-guided 3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability. Neuroimage 31 (3), 1116–1128.

Zhu, W., Huang, Y., Zeng, L., Chen, X., Liu, Y., Qian, Z., Du, N., Fan, W., Xie, X.,
2019. AnatomyNet: deep learning for fast and fully automated whole-volume
segmentation of head and neck anatomy. Med. Phys. 46 (2), 576–589.

http://arxiv.org/abs/2304.06716
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb16
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb16
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb16
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb17
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb17
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb17
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb17
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb17
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb18
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb19
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb20
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb20
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb20
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb20
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb20
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb21
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb22
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb23
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb23
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb23
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb23
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb23
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb24
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb24
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb24
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb24
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb24
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb25
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb26
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb26
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb26
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb26
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb26
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb27
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb27
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb27
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb28
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb28
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb28
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb28
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb28
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb29
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb30
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb31
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb32
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb32
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb32
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb32
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb32
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb33
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb34
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb34
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb34
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb34
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb34
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb35
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb36
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb37
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb37
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb37
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb37
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb37
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb38
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb38
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb38
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb38
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb38
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb39
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb40
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb41
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb41
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb41
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb41
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb41
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb42
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb42
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb42
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb42
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb42
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb43
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb44
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb44
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb44
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb44
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb44
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb45
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb45
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb45
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb45
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb45
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb46
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb47
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb48
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb48
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb48
http://arxiv.org/abs/2306.09579
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb50
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb50
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb50
http://arxiv.org/abs/2306.16925
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb52
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb53
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb54
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb55
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb55
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb55
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb55
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb55
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb56
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb57
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb57
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb57
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb57
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb57
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb58
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb58
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb58
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb58
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb58
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb59
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb59
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb59
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb59
http://refhub.elsevier.com/S1361-8415(24)00374-8/sb59

	SegRap2023: A benchmark of organs-at-risk and gross tumor volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma
	Introduction
	Clinical background
	Technical challenges
	Contribution

	Related Works
	OAR segmentation in head and neck cancers
	Benchmarks and datasets
	HNC OAR segmentation methods

	NPC GTV segmentation
	Benchmarks and datasets
	SOTA NPC GTV segmentation methods


	SegRap2023 challenge setup
	Challenge overview
	Data description
	Evaluation and rank strategies
	Challenge setup

	Overview of participating methods
	Task01: OAR segmentation
	Task02: GTV segmentation

	Results
	Results of Task01
	Results of Task02
	Visualization

	Discussion
	OAR segmentation in head and neck
	NPC GTV segmentation
	The gap between clinically applicable segmentation
	Limitation and future direction

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


